

PUBLIC

Code Assessment

of the Circle Gateway

Smart Contracts

July 08, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Open Findings 12

6 Resolved Findings 13

7 Informational 21

8 Notes 22

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Circle Team,

Thank you for trusting us to help Circle with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Circle Gateway according to
Scope to support you in forming an opinion on their security risks.

Circle implements a set of smart contracts for Circle Gateway, a crosschain primitive that enables the
bridging and aggregation of user's liquidity on any target chain with low latency.

The most critical subjects covered in our audit are functional correctness, signature handling, and access
control. Security regarding all the aforementioned subjects is high. All issues identified in the intermediate
reports have been resolved.

The general subjects covered are front-running, and gas efficiency. Some user operations may revert
due to front-running, see Deposit with Permit / Authorization Is Susceptible to Griefing Attacks.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 1

• Specification Changed 1

Medium -Severity Findings 0

Low -Severity Findings 7

• Code Corrected 4

• Specification Changed 2

• Risk Accepted 1

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Circle Gateway repository based on
the documentation files. Additionally, the relevant functions used from the TypedMemView library
contract were assessed.

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 29 Apr 2025 f24a7d19bf6f9458443991961a174de87edeee91 Initial Version

2 05 Jun 2025 ca774f13f51d924c58d48d40ba6a5735370af26b Version 2

3 24 Jun 2025 5b5446f5c622901acaea6a875b022425eecb0c13 Version 3

For the solidity smart contracts, the compiler version 0.8.29 was chosen and evm_version is set to
cancun. The following files were in the scope of this review:

lib/
 AddressLib.sol
 AttestationLib.sol (named MintAuthorizationLib.sol in Version 1)
 Attestations.sol (named MintAuthorizations.sol in Version 1)
 BurnIntentLib.sol (named BurnAuthorizationLib.sol in Version 1)
 BurnIntents.sol (named BurnAuthorizations.sol in Version 1)
 Cursor.sol (named AuthorizationCursor.sol in Version 1)
 EIP712Domain.sol (introduced in Version 2)
 TransferSpec.sol
 TransferSpecLib.sol
modules/
 common/
 Denylist.sol
 Domain.sol
 Pausing.sol
 TokenSupport.sol
 TransferSpecHashes.sol
 minter/
 Mints.sol
 wallet/
 Balances.sol
 Burns.sol
 Delegation.sol
 Deposits.sol
 WithdrawalDelay.sol
 Withdrawals.sol
GatewayCommon.sol
GatewayMinter.sol
GatewayWallet.sol
UpgradeablePlaceholder.sol

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope
All third-party code like libraries are excluded from the scope, except for the relevant functionalities from
the TypedMemView library that are used in the codebase. The system relies heavily on off-chain
operators which are not in scope of this review.

As a crosschain primitive, the same code will be deployed on different blockchains. These chains differ in
their behavior and their behavior might change in the future. The assessment was done on Ethereum's
behavior and EVM specifications. Before deploying on another chain, the compatibility needs to be
assessed and tested thoroughly. The same applies for supported tokens to be instant-trasferred as some
might be incompatible with the current setup (e.g., re-basing tokens, tokens with fees on transfers, etc.).

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Circle implements a set of smart contracts for the Gateway system, a crosschain primitive that enables
the transfer and aggregation of user's liquidity on any target chain with low latency. This system is
designed to be non-custodial: Users can withdraw their funds without the Gateway system's cooperation,
although this is subject to a time delay.

In general the system works as follows:

1. User deposit funds to a GatewayWallet contract on any supported chain and wait for block finality.

2. Version 1

Version 1

Gateway system issues an Attestation (named Mint Authorization in) to the user after the
user provides a signed BurnIntent (named Burn Authorization in).

3. User consumes the signed Attestation on the destination chain's GatewayMinter to mint tokens.

4. Gateway system consumes the signed BurnIntent on the source chain to burn tokens from the
GatewayWallet. A fee might be charged for the service.

2.2.1 Deposits
GatewayWallet works as an escrow that accepts user deposits with following interfaces:

• deposit(): A simple deposit that requires prior allowance granted.

• depositWithPermit(): The token is assumed to be ERC-7597 compliant, which accepts a
permit signature to increase the allowance. Note, custom signature verification is supported if the
signer is a contract.

• depositWithAuthorization(): The token is assumed to be ERC-7598 compliant, which
supports transfer with signed authorizations. Note, custom signature verification is supported if the
signer is a contract.

Only whitelisted tokens can be deposited and all the parties (msg.sender and depositor) involved are
required to be not denylisted. Deposits are blocked if the contract is paused.

2.2.2 Minting And Burning
After the transaction of the token deposits has been finalized on the source domains, users can
instant-transfer the tokens to another supported domain with the assistance of the Gateway system:

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• User must sign a BurnIntent that allows the Gateway system to burn the deposited funds on the
source domain, a fee might be charged for the service.

• Upon receiving the signed BurnIntent, the Gateway system will issue an Attestation with its
attestationSigners, which allows the user to mint tokens on the destination domain's
GatewayMinter contract.

• If a Attestation is consumed by the user on the destination domain, the Gateway system's
burnSigners will sign the respective BurnIntent. By submitting both the user's and the
burnSigner's signatures to the GatewayWallet contract, the Gateway system can burn user's
funds on the source domain.

• Version 2

Version 1

Minting on the same domain is supported. Since , same-chain transfers are implemented
similar to cross-chain transfers: tokens are first minted and burned at a later point in time. Therefore,
the total supply of the token is inflated after the minting happens. In , same-chain transfer
would move tokens from the GatewayWallet to the recipient instead.

Both the BurnIntent and the Attestation contain the same TransferSpec that embeds the detailed transfer
information. The BurnIntent must have a significantly longer expiration time (e.g., 3 days) than the
Attestation (e.g., few minutes).

In more details:

The function GatewayMinter.gatewayMint():

1. Accepts one or a set of Attestation with a valid signature from the Gateway system's
attestationSigners.

2. It performs sanity checks of each Attestation, most importantly, checks expiration; the Attestation is
targeted for the GatewayMinter contract on the local domain; and the msg.sender is not
denylisted.

3. An extra check on the sourceToken and destinationToken is performed if the transfer is in the
same domain.

4. Eventually it will mint tokens to the recipient.

The function GatewayWallet.gatewayBurn():

1. Accepts one or a set of BurnIntent from different users with the respective user signatures and
actual fees charged.

2. The submitted data (intents, signatures, fees) must be validated and signed by the
Gateway system's burnSigner.

3. The (set of) BurnIntent(s) of each user will be checked and processed:

1. Version 1If the BurnIntent is not targeted at this domain (or a same domain transfer in), it
will be skipped.

2. The BurnIntent is not expired; the source domain and contract match; the token is
supported; and the actual fee is below maxFee provided by the user.

3. The signature is valid and the recovered signer matches with the sourceSigner.

4. The signer was ever authorized for the source depositor.

4. It is required that all the relevant BurnIntents in a set use the same burn token address.

5. Eventually the token is burnt by reducing the available (and withdrawing) balance of the depositor.
The fee is minted to the feeRecipient.

Each Attestation and BurnIntent can only be processed once since the TransferSpecHash prevents
replaying the same Attestation or BurnIntent. The view function isTransferSpecHashUsed() returns
the status of a TransferSpec. GatewayMinter should have the required role to call mint() on all the

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

supported token (or MintAuthority), while GatewayWallet should have the required role on tokens to call
burn().

2.2.3 Withdrawals
A two-step withdrawal approach is implemented to withdraw funds from the Gateway Wallet. This is
mostly intended as fallback for users to retrieve their funds if the Gateway system's services issuing
Attestations are not usable, to ensure the non-custodial property of the system.

1. initiateWithdrawal(): User has to initiate a withdrawal first, which will update the internal
accounting of the available balance and the withdrawing balance. The withdrawalBlock will be
set to withdrawalDelay from current block number.

2. withdraw(): Once withdrawalDelay has elapsed, user can finalize the withdrawal and all the
withdrawing balance will be transferred to the recipient.

Note, initiating a new withdrawal will always extend the withdrawalDelay of the existing pending
withdrawals.

2.2.4 Delegates
Delegates are roles who can operate on behalf of the users (depositors). Users can configure delegates
with:

• addDelegate(): Add a new delegate to operate on behalf of the user for a specific token.

• removeDelegate(): Revoke an existing delegate.

The main responsibility of delegates are:

• Version 3Initiate or finalize withdrawals on behalf of users (this functionality was removed in).

• Sign BurnIntent on behalf of users. Note, even if a delegate is revoked, its future signatures for a
BurnIntent are still considered valid by the smart contracts.

The Gateway Wallet and Minter are expected to be deployed behind a proxy and the implementation
uses UUPSUpgradeable pattern where the upgrade is restricted to the owner. They further inherit
Pausing and Denylist:

• Deposit, withdraw, mint and burn can all be paused.

• A denylisted address can withdraw, however, cannot further deposit, burn or mint.

2.3 Changes in Version 2
Version 2The codebase was refactored in , and the following changes were implemented:

• A new function depositFor was added in contract Deposits. The caller provides the tokens
required for the deposit, but they are accounted on the balance of depositor specified by the
caller.

• The hashing and signing of burn intents is made compliant with EIP-712.

• The fee behavior is now consistent for both same-chain and cross-chain transfers.

• The supported tokens added in the GatewayWallet should implement the interface
IBlacklistableToken.

• A mapping is now used to whitelist accounts with roles attestationSigners and burnSigners.
This approach facilitates the rotation of accounts that have any of the signing roles.

2.4 Changes in Version 3

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• Only depositors can initiate and withdraw funds from the GatewayWallet.

2.5 Trust Model
Owner: owners of both GatewayMinter and GatewayWallet are fully trusted; they have privileges to:

1. Upgrade the implementation and add the supported tokens. These changes are not subject to
delays, hence owner can break the non-custodian property of the system by upgrading to a
different implementation contract.

2. Setting denylister, pauser, mint authority.

3. Gateway Minter's owner can update attestationSigners, and Gateway Wallet's owner can
update the burnSigners, feeRecipient, and withdrawalDelay.

If owner is compromised, they can upgrade the contract to a malicious implementation to drain deposited
funds or mint new tokens.

Pauser: trusted; it can pause the main functionalities of the contract. If this account is compromised, it
can cause denial-of-service (including withdrawals), but it cannot access user's funds.

Denylister: trusted; it can block users from using the crosschain primitive. If this account is
compromised, it can cause denial-of-service by denylisting core contracts, but it cannot access user's
funds.

Attestation signer: fully trusted; if any account with this role is compromised, the attacker can exploit the
minting role of this contract to mint supported tokens.

Burn signer: trusted; they should validate that the encoding of the calldata they sign is correct. Accounts
with this role cannot directly access user's funds but they can enable double spending by not signing
burn intents. Furthermore, Burn signers and Attestation signers should always be distinct accounts.

Delegatees: fully trusted by the delegator (user). Delegatees can reset the timer for withdrawing delay,
instant-transfer delegator's funds to arbitrary addresses or withdraw them from the wallet.

Users: not trusted.

Furthermore, any external token used by the system is considered fully trusted and should be carefully
assessed before being whitelisted as a supported token. We assume only ERC20-compliant tokens
without special behavior (e.g., inflationary/deflationary tokens, delayed finality, transfer hooks, fees on
transfer, etc.) and implementing IMintBurnToken, IBlacklistableToken, IERC7597 and
IERC7598 interfaces are supported by the system. Finally, supported tokens should also implement the
function burn which reverts on failure.

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk AcceptedDeposit With Permit / Authorization Is Susceptible to Griefing Attacks

5.1 Deposit With Permit / Authorization Is
Susceptible to Griefing Attacks
Design Low Version 1 Risk Accepted

CS-CSpend-003

The external functions depositWithPermit() and depositWithAuthorization() in the contract
Deposits are susceptible to griefing attacks. Attacker front-runs a legit transaction and calls permit() /
receiveWithAuthorization() function of the target token to consume the nonce. Therefore, the
respective call to Deposits contract may revert due a used nonce.

Risk accepted:

Circle is aware and accepts the risk. Since the contract cannot distinguish between an already used
permit and an invalid one, it requires the permit to be valid. Allowing the deposit to proceed using existing
allowance would expose users to worse risks such as unauthorized fund movement (i.e. any user who
has approved GatewayWallet for their USDC).

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedPossible to Inject Data on Burn Authorizations

• Specification ChangedViolation of Non-Custodial Property

Medium -Severity Findings 0

Low -Severity Findings 6

• Specification ChangedSame Chain Transfers May Be Subject to a Fee

• Code CorrectedUnchecked Return Value of Identity Precompile

• Specification ChangedFunction Implementation Does Not Match Specifications

• Code CorrectedInconsistent Behavior of View Functions in Balances

• Code CorrectedIndexed Addresses in DenylisterChanged

• Code CorrectedNon-standard EIP-7201 Formula Identifier

Informational Findings 7

• Specification ChangedMissing Blacklist Check

• Code CorrectedUnused Import in Balances

• Code CorrectedEIP-1155 Compliant View Functions in Balances Might Revert

• Code CorrectedMisleading Field Name Nonce

• Code CorrectedMissing Sanity Checks

• Code CorrectedUnused Functions

• Specification ChangedValidation of TypedMemView References

6.1 Possible to Inject Data on Burn Authorizations
Security High Version 1 Code Corrected

CS-CSpend-001

The function gatewayBurn() is called to burn deposited funds from the GatewayWallet contract by
providing a signature from burnSigner over the calldata body that embed the
(BurnAuth, signatures, fees).

function _verifyBurnerSignature(bytes memory burnerSignature)
 internal view {

 ...

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

 bytes memory calldataBytes = msg.data[0x84:msg.data.length - 0x80];

 // Verify the signature and revert if it's invalid
 address recoveredSigner = ECDSA.recover(
 keccak256(calldataBytes).toEthSignedMessageHash(), burnerSignature);
 if (recoveredSigner != BurnsStorage.get().burnSigner) {
 revert InvalidBurnSigner();
 }
}

The signature from burnSigner is verified against the msg.data body. However, the encoding of
calldata could be variable; and a customized calldata encoding can be exploited to inject malicious
payload and bypass the burner signature check. Consider the following attack scenario (also illustrated in
the plot):

1. User signs a BurnAuth (with expiry in 3 days) and receives a MintAuth (with expiry in 2 minutes) to
mint 10k USDC on Base.

2. User eventually decides to not transfer the funds, hence the MintAuth expires after 2 minutes.

3. Attacker learns user's (BurnAuth, BurnSig), and then attaches them into the metadata of his own
BurnAuth.

4. Now, the attacker follows the typical workflow for his own Gateway transfer (also shown in the plot):

4.1. He signs the BurnAuth to get a MintAuth to mint 10 USDC on Base.

4.2. He consumes the MintAuth on Base.

4.3. Burn signer signs the calldata to burn attacker's 10 USDC onchain.

4.4. Attacker calls gatewayBurn() with the calldata signed by burnSigner but only changes
the first 3 offsets, which now points to the attackers's (BurnAuth, BurnSig, Fee) in the metadata
of the attacker's TransferSpec. As a result, the validation of the signature from burnSigner
passes, and the user's 10k USDC will be burned on the source chain, even though the
respective MintAuth is not used.

Note in this attack scenario, the attacker can also freely choose any fees when burning user's funds. This
also enables attackers to consume their burn authorizations with zero fees.

In summary, the attacker can:

• Execute other user's BurnAuth that should not be executed, leading to loss of user funds.

• Execute other user's BurnAuth with maximal fees.

• Execute their own BurnAuth with zero fees.

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Code corrected:

The external function gatewayBurn() has been revised to remove the usage of msg.data that
enabled the attack presented above. The function now takes two inputs, a bytes array which represents
an ABI-encoded calldata, and the burner signature:

function gatewayBurn(bytes calldata calldataBytes, bytes calldata signature) external whenNotPaused {
 // Verify that the calldata was signed by a valid burn signer
 _verifyBurnSignerSignature(calldataBytes, signature);

 // Decode the calldata into the intents, signatures, and fees arrays
 (bytes[] memory intents, bytes[] memory signatures, uint256[][] memory fees) =
 abi.decode(calldataBytes, (bytes[], bytes[], uint256[][]));

 ...
}

The code now decodes intents, user signatures, and fees from the the same calldataBytes
that are signed by the trusted account.

6.2 Violation of Non-Custodial Property
Correctness High Version 1 Specification Changed

CS-CSpend-002

The contract GatewayWallet is designed to be non-custodial, meaning that privileged roles such as
burnSigner or mintAuthorizationSigner cannot access users' deposited funds. GatewayWallet
requires a BurnAuth signature from the depositor or their delegatee in order to reduce the user's
balance.

However, this property does not hold for same-chain transfers. In this case, the call path
gatewayMint() reduces the user's balance but does not require any signature from the user. As a
result, it allows the privileged role mintAuthorizationSigner to freely transfer the user's funds to
arbitrary recipients.

Specification changed:

Version 2The same-chain transfers have been refactored in to follow the instant-transfer approach
instead of simple transfers. This means same-chain transfers are made in line with cross-chain transfers.
Therefore, the functions Mint._mintOrTransfer() and Burns.gatewayTransfer() have been
removed.

6.3 Same Chain Transfers May Be Subject to a
Fee
Correctness Low Version 2 Specification Changed

CS-CSpend-013

The code did not allow to take a fee from same chain transfers in version 1 of the code in line with the
documented product requirements:

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Same-chain withdrawals are the same as cross-chain instant transfers, except the funds are
transferred out of the wallet contract instead of being minted and then burned.
No fee is charged for this, since the Gateway system does not have to cover the gas fee for
the burn.

This part of the code was refactored as part of the fix of issue Violation of non-custodial property. Since
same chain transfers are now using the same functionality as cross chain transfers, the Gateway system
has to burn these tokens. The statement in the text is no longer correct and the code now allows to take
fees.

Specifications changed:

The inline NatSpec comments of the contract GatewayWallet have been revised to clarify that a fee is
charged also for same-chain transfers:

/// @notice For same-chain withdrawals, ...
/// A fee is deducted from the user's balance within the `GatewayWallet` contract
/// in addition to the requested amount, since Circle incurs gas costs
/// for the burn operation.

6.4 Unchecked Return Value of Identity
Precompile
Design Low Version 2 Code Corrected

CS-CSpend-014

The function TransferSpecLib.getTypedDataHash() performs an external call to the identity
precompile to copy data into memory:

// The pop() removes the success boolean returned by staticcall since we don't need it.
pop(staticcall(gas(), 4, footerStart, footerLen, add(ptr, 128), footerLen))

The code, as suggested by the inline comment, expects that the call to the identity precompile always
succeeds, however the call can fail due to insufficient gas.

Code corrected:

The success flag returned by the identity precompile is now checked:

let success := staticcall(gas(), 4, footerStart, footerLen, add(ptr, 128), footerLen)
if iszero(success) {
 // Revert with custom error
 ...
}

if the success flag is false, the function getTypedDataHash() reverts with a custom error.

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6.5 Function Implementation Does Not Match
Specifications
Correctness Low Version 1 Specification Changed

CS-CSpend-004

The NatSpec description for function validateBurnAuthorizations states:

Allows anyone to validate whether a set of burn authorizations would be valid if it
were signed by the specified signer (which must match `sourceSigner` in the
TransferSpec`).

However, the implementation of the function lacks important checks that are performed when a BurnAuth
is executed. For instance, validateBurnAuthorizations() uses a fee of zero but a non-zero fee
might be charged when BurnAuth is consumed. The function does not check if the TransferSpec has
already been consumed. Moreover, it does not check if the depositor has enough balance and if there is
an actual balance change. Therefore, even if validateBurnAuthorizations() returns true and a
valid signature from signer is provided, it does not guarantee that the BurnAuth will execute
successfully on-chain.

Specification changed:

Version 2The view function has been removed in of the codebase.

6.6 Inconsistent Behavior of View Functions in
Balances
Design Low Version 1 Code Corrected

CS-CSpend-005

The majority of view functions in the Balances contract use the modifier tokenSupported which reverts
if the input token is not supported. However, functions totalBalance() and availableBalance()
do not use this modifier.

Code corrected:

The check if the input token is supported has been removed from view functions
withdrawingBalance(), withdrawableBalance(), balanceOf() and balanceOfBatch(),
which now return 0 instead of reverting.

6.7 Indexed Addresses in DenylisterChanged
Design Low Version 1 Code Corrected

CS-CSpend-016

The DenylisterChanged event indexes its arguments, whereas other similar events emitted during
role changes do not.

Code corrected:

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

The events emitted when roles changes have been updated to be consistent.

6.8 Non-standard EIP-7201 Formula Identifier
Design Low Version 1 Code Corrected

CS-CSpend-006

The EIP-7201 specifies the formula identifier erc7201 to be used in the NatSpec tag of the struct type,
however the codebase uses the identifier 7201:

/// @custom:storage-location 7201:...

Code corrected:

The formula identifier has been fixed in the NatSpec tag of the struct types.

6.9 Missing Blacklist Check
Informational Version 2 Specification Changed

CS-CSpend-018

The supported tokens, e.g. USDC, feature an address blacklist. If one deposits into a gateway wallet and
initiates a withdrawal, anytime after the withdrawal delay has passed one can withdraw and specify any
fresh address as the recipient of the tokens.

This lets one park funds without risk of being blacklisted. Once the holder decides to access them, he
picks a clean address and withdraws, then quickly uses or converts the funds before the Gateway system
can freeze them. There’s still some risk for the malicious token holder if the Gateway system upgrades
the contract, but it's a simple way to park such funds.

This is not limited to this system, but a general pattern possible in systems where one contract holds all
funds centrally and users are able to withdraw later.

However since this system is operated by Circle, if this happens it may be interpreted negatively.

Specification changed:

Version 3In , delegatees cannot initiate or complete a withdrawal anymore. Furthermore, the function
withdraw() always transfers funds to the msg.sender which should be the depositor address.
Therefore, if the depositor is blacklisted on USDC, the transfer will revert. This implies that any
integrating 3rd party smart contract must be able to call initiateWithdrawal()/withdraw() itself.

6.10 Unused Import in Balances
Informational Version 2 Code Corrected

CS-CSpend-015

Version 2The contract Balances does not use the modifier tokenSupported in , hence the contract
TokenSupport is imported but not used.

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

Code corrected:

The unused import has been removed.

6.11 EIP-1155 Compliant View Functions in
Balances Might Revert
Informational Version 1 Code Corrected

CS-CSpend-017

The view functions balanceOf() and balanceOfBatch() in the contract Balances revert if the data
encoded in the input id is invalid, i.e., token is not supported, or the balanceType is invalid.

Code corrected:

The view functions balanceOf() and balanceOfBatch() do not revert anymore if the token is not
supported or the balanceType is invalid, but return 0 instead.

6.12 Misleading Field Name Nonce
Informational Version 1 Code Corrected

CS-CSpend-007

The struct TransferSpec declares a field named nonce but different TransferSpec can use the same
nonce and they are considered valid.

Code corrected:

The field nonce has been renamed to salt.

6.13 Missing Sanity Checks
Informational Version 1 Code Corrected

CS-CSpend-008

1. The function GatewayMinter.initialize() could check that input arrays
supportedTokens_ and tokenMintAuthorities_ have the same length to avoid accidental
misconfigurations.

Version 2 :

2. The function Deposits.depositFor() could check that depositor is not address zero to
prevent accidental deposits on behalf of the zero address in the wallet contract.

Code corrected:

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

The sanity check described in point 1 has been added in function GatewayMinter.initialize().
Similarly, the function Deposits.depositFor() now checks that depositor is non-zero.

6.14 Unused Functions
Informational Version 1 Code Corrected

CS-CSpend-011

The internal functions getMetadata() and _asTransferSpec() in TransferSpecLib are not used
in the current version of the codebase.

Code corrected:

Version 2The unused functions have been removed in .

6.15 Validation of TypedMemView References
Informational Version 1 Specification Changed

CS-CSpend-012

The function TransferSpecLib.getMetadata() does not check the return value of
TypedMemView.slice() which potentially can be NULL.

Specification changed:

The function getMetadata() has been removed from the codebase.

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Non-canonical Conversion of Bytes to
Address
Informational Version 1

CS-CSpend-009

The function AddressLib._bytes32ToAddress() implements the following statement to perform the
type conversion:

function _bytes32ToAddress(bytes32 buf) internal pure returns (address) {
 return address(uint160(uint256(buf)));
}

Note that due to downcasting, higher bits of buf will be omitted. Thus, it is possible to have different input
values buf that map to the same address.

7.2 Possible Gas Optimizations
Informational Version 1 Code Partially Corrected

CS-CSpend-010

We provide a non-exhaustive list of optimizations to make the codebase more efficient in terms of gas:

1. The mappings denylistMapping, supportedTokens and usedHashes use a type bool for
the value. Solidity uses a word (256 bits) for each stored value and performs some additional
operations when operating on bool values (due to masking). Therefore, using uint instead of
bool is slightly more efficient.

2. The function gatewayMint() calls redundantly getTransferSpec() in function
_validateMintAuthorization() and when passing the input to _mintOrTransfer().

3. The argument ids in function balanceOfBatch() can be stored in calldata instead of memory.

4. The function _moveBalanceToWithdrawing() performs redundant SLOADs when returning
values.

Version 2 :

5. The constant variable _CACHED_DOMAIN_SEPARATOR does not get evaluated at compile time and
included in the bytecode. Instead it points to a constant function that gets executed at runtime.

6. The function TransferSpecLib.getTypedDataHash() uses the identity precompile to copy
data into memory, however using the MCOPY opcode is more efficient.

Code partially corrected:

Version 2The optimizations described in points 2, 3, and 4 have been implemented in .

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Denylist on GatewayWallet and
GatewayMinter
Note Version 1

Both contracts GatewayWallet and GatewayMinter keep a separate list of denylisted accounts that is
independent of the denylist at the token level. The GatewayWallet prevents denylisted accounts from
depositing tokens into the contract, updating delegations, or bridging (including same-chain transfers)
tokens. However, denylisted users can still withdraw their tokens from the wallet contract.

8.2 Expanded Validity Window for Attestations
Note Version 1

The validity of an Attestation is based on the block.number of the destination chain. As a result, if block
production on the destination chain slows down immediately after the Attestation is issued, the effective
validity window of the Attestation becomes longer. In some cases, this window may even exceed that of
the BurnIntent, especially if the destination chain experiences unexpectedly slow block production.

In general, block.number is not reliable for short time intervals (e.g., minutes) due to the possibility of
missing or delayed blocks.

8.3 Expected Backend Checks
Note Version 1

Generally, we assume all checks performed on-chain on the gatewayBurn() call-path are validated
first by the backend to ensure a BurnIntent always executes successfully on-chain.

Additionally, we assume the following checks are performed by backend before an Attestation is issued:

• The field "hook data length" in TransferSpec stores the correct length of the hook data.

• The length of the hook data in TransferSpec is restricted to ensure the execution of BurnIntent does
not consume large amounts of gas, potentially making transactions revert on-chain due to gas
limitations.

• The earliest expiry of a BurnIntent is no shorter than the withdrawal delay period.

• The user-provided signature for a BurnIntent is valid and the signer is authorized on-chain as
delegatee of the depositor.

• The value specified in BurnIntent (sum of values in a BurnIntentSet) is less or equal to the available
balance of the depositor.

• The field "max fee" is valid.

• The source token on the source domain matches the destination token on the destination domain.

• The source tokens for the same source domain in a BurnIntentSet should be the same, otherwise
gatewayBurn() does not execute successfully.

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

• The actual fee charged for a BurnIntent is not extremely large even if the user specifies a large max
fee (2**256-1), otherwise gatewayBurn() reverts due to overflows.

• The TransferSpec in an Attestation matches the respective TransferSpec in a BurnIntent.

8.4 Gas Cost Depend on Memory Expansion in
gatewayBurn
Note Version 1

The function gatewayBurn() takes as input an array of burn intents, potentially from different users,
each of which may include a set of BurnIntent entries signed by a single user. Although only a subset of
all intents might be relevant for the local chain, all of them are copied into memory. We would like to
highlight that the cost of memory expansion grows quadratically on the EVM; therefore, larger sets of
BurnIntent consume more gas.

The off-chain service (attestation signers and BurnIntent signers) should take into account the gas cost of
executing a BurnIntent on-chain. Large sets of BurnIntent may potentially be non-executable on-chain
due to gas limits.

8.5 Implications of Chain Re-Organizations for
Burn Intents
Note Version 1

The protocol design requires users to trust the off-chain service (the attestation signer and the burn
signer) to perform token burns only after a valid Attestation has been executed on the destination chain.
The off-chain service is expected to ensure that this assumption holds also in the presence of chain
re-orgs.

If a re-org occurs on the destination chain, a previously valid Attestation may become invalid—particularly
if its validity window is short. In such cases, the corresponding BurnIntent must not be executed on the
source chain, as the burn condition is no longer satisfied.

Re-orgs on the source chain can similarly affect BurnIntent execution. To mitigate this risk, the
withdrawalDelay parameter—configured by the owner—must be long enough to accommodate
potential re-orgs on both chains involved in a TransferSpec.

8.6 Signatures From Revoked Delegatees Are
Accepted by GatewayWallet
Note Version 1

The call-path for gatewayBurn checks if a BurnIntent is signed by an address that is authorized by the
depositor. The check is implemented in the internal function _wasEverAuthorizedForBalance()
which accepts signatures also from a revoked delegatee:

function _wasEverAuthorizedForBalance(...) ... returns (bool)
{
 // A depositor is always authorized for its own balance
 if (addr == depositor) return true;

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

 // Otherwise, check that the stored authorization status is either
 // `Authorized` or `Revoked`
 AuthorizationStatus status = DelegationStorage.get().
 authorizedDelegates[token][depositor][addr];
 return status != AuthorizationStatus.Unauthorized;
}

Users should trust the off-chain service (attestation signers) to monitor the state on chain and reject
signatures from a revoked delegatee.

8.7 Total Supply of Tokens Onchain Temporarily
Increases During Gateway Transfers
Note Version 1

This crosschain primitive is designed to first mint the trasferred tokens on the destination domain and
then burn them later on the source chain. As a side effect, instant-transfers temporarily increase the total
supply of the underlying token across all chains, until all pending burn intents are processed.

Version 2

The total supply of the underlying tokens increases also for same-chain transfers as they work similar to
cross-chain transfers since .

Circle business comment:

Circle is aware of this behavior, and ensures that reserve integrity is maintained throughout the Gateway
transfer process.

Circle - Circle Gateway - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Deposits
	2.2.2 Minting And Burning
	2.2.3 Withdrawals
	2.2.4 Delegates

	2.3 Changes in Version 2
	2.4 Changes in Version 3
	2.5 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Deposit With Permit / Authorization Is Susceptible to Griefing Attacks

	6 Resolved Findings
	6.1 Possible to Inject Data on Burn Authorizations
	6.2 Violation of Non-Custodial Property
	6.3 Same Chain Transfers May Be Subject to a Fee
	6.4 Unchecked Return Value of Identity Precompile
	6.5 Function Implementation Does Not Match Specifications
	6.6 Inconsistent Behavior of View Functions in Balances
	6.7 Indexed Addresses in DenylisterChanged
	6.8 Non-standard EIP-7201 Formula Identifier
	6.9 Missing Blacklist Check
	6.10 Unused Import in Balances
	6.11 EIP-1155 Compliant View Functions in Balances Might Revert
	6.12 Misleading Field Name Nonce
	6.13 Missing Sanity Checks
	6.14 Unused Functions
	6.15 Validation of TypedMemView References

	7 Informational
	7.1 Non-canonical Conversion of Bytes to Address
	7.2 Possible Gas Optimizations

	8 Notes
	8.1 Denylist on GatewayWallet and GatewayMinter
	8.2 Expanded Validity Window for Attestations
	8.3 Expected Backend Checks
	8.4 Gas Cost Depend on Memory Expansion in gatewayBurn
	8.5 Implications of Chain Re-Organizations for Burn Intents
	8.6 Signatures From Revoked Delegatees Are Accepted by GatewayWallet
	8.7 Total Supply of Tokens Onchain Temporarily Increases During Gateway Transfers

