
Circle Internet
Financial - EVM

Bridge
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: October 10th, 2022 - November 4th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) INCOMPATIBILITY WITH NON-STANDARD ERC20 TOKENS - MEDIUM

14

Description 14

Code Location 14

Risk Level 16

Recommendation 16

Remediation Plan 16

3.2 (HAL-02) LACK OF INPUT VALIDATION IN REPLACEDEPOSITFORBURN MAY

RESULT IN TOKEN LOSS - MEDIUM 17

Description 17

Proof of Concept 20

Recommendation 20

Remediation Plan 21

3.3 (HAL-03) LACK OF TRANSFEROWNERSHIP PATTERN - LOW 22

Description 22

1

Risk Level 23

Recommendation 23

Remediation Plan 23

3.4 (HAL-04) REMOVEREMOTETOKENMESSENGER EMITS EVENT BASING ON USER

INPUT - INFORMATIONAL 24

Description 24

Recommendation 25

Remediation Plan 25

3.5 (HAL-05) UPDATEATTESTERMANAGER EMITS EVENT WITH INCORRECT DATA -

INFORMATIONAL 26

Description 26

Recommendation 27

Remediation Plan 27

3.6 (HAL-06) GAS OVER-CONSUMPTION IN LOOPS - INFORMATIONAL 28

Description 28

Code Location 28

Proof of Concept 28

Risk Level 29

Recommendation 29

Remediation Plan 29

3.7 (HAL-07) UNNEEDED INITIALIZATION OF UINT256 VARIABLES TO 0 -

INFORMATIONAL 30

Description 30

Code Location 30

Risk Level 30

Recommendation 30

Remediation Plan 30

2

4 MANUAL TESTING 31

5 AUTOMATED TESTING 37

5.1 STATIC ANALYSIS REPORT 38

Description 38

Slither results 38

5.2 AUTOMATED SECURITY SCAN 43

Description 43

MythX results 43

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 10/10/2022 Grzegorz Trawinski

0.2 Document Update 10/31/2022 Grzegorz Trawinski

0.3 Draft Review 10/31/2022 Kubilay Onur Gungor

0.4 Draft Review 10/31/2022 Gabi Urrutia

0.5 Draft Update 11/07/2022 Grzegorz Trawinski

0.6 Draft Review 11/10/2022 Kubilay Onur Gungor

0.7 Draft Review 11/10/2022 Gabi Urrutia

1.0 Remediation Plan 12/05/2022 Grzegorz Trawinski

1.1 Remediation Plan Review 12/05/2022 Roberto Reigada

1.2 Remediation Plan Review 12/05/2022 Piotr Cielas

1.3 Remediation Plan Review 12/05/2022 Gabi Urrutia

4

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Grzegorz
Trawinski

Halborn Grzegorz.Trawinski@halborn.com

Kubilay Onur
Gungor

Halborn Kubilay.Gungor@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Grzegorz.Trawinski@halborn.com
mailto:Kubilay.Gungor@halborn.com
mailto:Roberto.Reigada@halborn.com
mailto:Piotr.Cielas@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Circle is a global financial technology company, the creators of USDC and

Euro Coin.

Circle Internet Financial engaged Halborn to conduct a security audit

on their smart contracts beginning on October 10th, 2022 and ending on

November 4th, 2022 . The security assessment was scoped to the smart

contracts provided to the Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were mostly

addressed by the Circle Internet Financial team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

7

EX
EC

UT
IV

E
OV

ER
VI

EW

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/func-

tions. (solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet deployment (Brownie, Remix IDE, Visual Studio Code)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

8

EX
EC

UT
IV

E
OV

ER
VI

EW

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following evm-bridge-contracts:

• MessageTransmitter.sol

• TokenMessenger.sol

• TokenMinter.sol

• roles/TokenController.sol

• roles/Rescuable.sol

• roles/Pausable.sol

• roles/Ownable.sol

• roles/Attestable.sol

• messages/Message.sol

• messages/BurnMessage.sol

Commit ID: 7092d95eb35a49e404af349fc4ee5735a630e04c

Additionally, Circle Internet Financial team requested to include third-

party library TypedMemView.sol into the scope of the assessment.

Commit ID: 3071bb11a8f87dfaa65846f3f12bba2ddf16add8

OUT-OF-SCOPE:

Other smart contracts in the repository, external libraries and economical

attacks.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/circlefin/evm-bridge-contracts
https://github.com/circlefin/evm-bridge-contracts/commit/7092d95eb35a49e404af349fc4ee5735a630e04c
https://github.com/summa-tx/memview-sol/commit/3071bb11a8f87dfaa65846f3f12bba2ddf16add8

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 2 1 4

IM
PA
CT

LIKELIHOOD

(HAL-01)
(HAL-02)

(HAL-04)
(HAL-05)

(HAL-03)

(HAL-06)
(HAL-07)

11

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-01 - INCOMPATIBILITY WITH
NON-STANDARD ERC20 TOKENS

Medium RISK ACCEPTED

HAL-02 - LACK OF INPUT VALIDATION
IN REPLACEDEPOSITFORBURN MAY RESULT

IN TOKEN LOSS
Medium SOLVED - 12/05/2022

HAL-03 - LACK OF TRANSFER-OWNERSHIP
PATTERN

Low SOLVED - 12/05/2022

HAL-04 - REMOVEREMOTETOKENMESSENGER
EMITS EVENT BASING ON USER INPUT

Informational SOLVED - 12/05/2022

HAL-05 - UPDATEATTESTERMANAGER
EMITS EVENT WITH INCORRECT DATA

Informational SOLVED - 12/05/2022

HAL-06 - GAS OVER-CONSUMPTION IN
LOOPS

Informational SOLVED - 12/05/2022

HAL-07 - UNNEEDED INITIALIZATION OF
UINT256 VARIABLES TO 0

Informational SOLVED - 12/05/2022

12

EX
EC

UT
IV

E
OV

ER
VI

EW

13

FINDINGS & TECH
DETAILS

3.1 (HAL-01) INCOMPATIBILITY WITH
NON-STANDARD ERC20 TOKENS - MEDIUM

Description:

Some tokens (such as USDT) do not properly implement the EIP20 stan-

dard and their transfer/transferFrom functions return void, instead of a

boolean. Calling these functions with the correct EIP20 function signa-

tures will always revert as it does in the _depositForBurn() function in

the TokenMessenger contract.

Tokens that do not correctly implement the latest EIP20 spec, such as

USDT, will not be able to be used in the smart contract as they revert

the transaction due to missing return value.

It is recommended using the SafeERC20 versions of OpenZeppelin with the

safeTransfer and safeTransferFrom functions that handle return value

check as well as non-standard compliant tokens.

Code Location:

Listing 1: TokenMessenger.sol (Lines 434-441)

418 function _depositForBurn(

419 uint256 _amount ,

420 uint32 _destinationDomain ,

421 bytes32 _mintRecipient ,

422 address _burnToken ,

423 bytes32 _destinationCaller

424) internal returns (uint64 nonce) {

425 require(_amount > 0, "Amount must be nonzero");

426 require(_mintRecipient != bytes32 (0), "Mint recipient must

ë be nonzero");

427

428 bytes32 _destinationTokenMessenger =

ë _getRemoteTokenMessenger(

429 _destinationDomain

430);

431

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

432 ITokenMinter _localMinter = _getLocalMinter ();

433 IMintBurnToken _mintBurnToken = IMintBurnToken(_burnToken)

ë ;

434 require(

435 _mintBurnToken.transferFrom(

436 msg.sender ,

437 address(_localMinter),

438 _amount

439),

440 "Transfer operation failed"

441);

442 _localMinter.burn(_burnToken , _amount);

443

444 // Format message body

445 bytes memory _burnMessage = BurnMessage._formatMessage(

446 messageBodyVersion ,

447 Message.addressToBytes32(_burnToken),

448 _mintRecipient ,

449 _amount ,

450 Message.addressToBytes32(msg.sender)

451);

452

453 uint64 _nonceReserved = _sendDepositForBurnMessage(

454 _destinationDomain ,

455 _destinationTokenMessenger ,

456 _destinationCaller ,

457 _burnMessage

458);

459

460 emit DepositForBurn(

461 _nonceReserved ,

462 _burnToken ,

463 _amount ,

464 msg.sender ,

465 _mintRecipient ,

466 _destinationDomain ,

467 _destinationTokenMessenger ,

468 _destinationCaller

469);

470

471 return _nonceReserved;

472 }

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

It is recommended to use SafeERC20: safeTransfer() and safeTransferFrom

().

Remediation Plan:

RISK ACCEPTED: The Circle team is aware of the finding, but it is not

expected to support any tokens with solution’s legacy implementation of

transfer/transferFrom.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) LACK OF INPUT
VALIDATION IN REPLACEDEPOSITFORBURN
MAY RESULT IN TOKEN LOSS - MEDIUM

Description:

The replaceDepositForBurn() function of the TokenMessenger.sol contract

does not check the newMintRecipient parameter address zero. Instead,

the _depositForBurn() internal function performs such a check. Addi-

tionally, the replaceDepositForBurn() function accepts a second address

for the newDestinationCaller parameter, which can be set to the address

zero, and the solution is capable of handling such a situation (empty

destinationCaller means any address can call the receiveMessage function).

On the other hand, it is not possible to update newDestinationCaller with-

out updating the newMintRecipient. Lack of validation increase the risk

that the user may unintentionally and accidentally provide a zero address

for the newMintRecipient parameter. As a result, the user would not

receive tokens transferred between chains.

Listing 2: TokenMessenger.sol (Line 251)

247 function replaceDepositForBurn(

248 bytes memory originalMessage ,

249 bytes calldata originalAttestation ,

250 bytes32 newDestinationCaller ,

251 bytes32 newMintRecipient

252) external {

253 bytes29 _originalMsg = originalMessage.ref (0);

254 bytes29 _originalMsgBody = _originalMsg._messageBody ();

255 bytes32 _originalMsgSender = _originalMsgBody.

ë _getMessageSender ();

256 // _originalMsgSender must match msg.sender of original

ë message

257 require(

258 msg.sender == Message.bytes32ToAddress(

ë _originalMsgSender),

259 "Invalid sender for message"

260);

261

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

262 bytes32 _burnToken = _originalMsgBody._getBurnToken ();

263 uint256 _amount = _originalMsgBody._getAmount ();

264

265 bytes memory _newMessageBody = BurnMessage._formatMessage(

266 messageBodyVersion ,

267 _burnToken ,

268 newMintRecipient ,

269 _amount ,

270 _originalMsgSender

271);

272

273 localMessageTransmitter.replaceMessage(

274 originalMessage ,

275 originalAttestation ,

276 _newMessageBody ,

277 newDestinationCaller

278);

279

280 emit DepositForBurn(

281 _originalMsg._nonce (),

282 Message.bytes32ToAddress(_burnToken),

283 _amount ,

284 msg.sender ,

285 newMintRecipient ,

286 _originalMsg._destinationDomain (),

287 _originalMsg._recipient (),

288 newDestinationCaller

289);

290 }

Listing 3: TokenMessenger.sol (Line 426)

418 function _depositForBurn(

419 uint256 _amount ,

420 uint32 _destinationDomain ,

421 bytes32 _mintRecipient ,

422 address _burnToken ,

423 bytes32 _destinationCaller

424) internal returns (uint64 nonce) {

425 require(_amount > 0, "Amount must be nonzero");

426 require(_mintRecipient != bytes32 (0), "Mint recipient must

ë be nonzero");

427

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

428 bytes32 _destinationTokenMessenger =

ë _getRemoteTokenMessenger(

429 _destinationDomain

430);

431

432 ITokenMinter _localMinter = _getLocalMinter ();

433 IMintBurnToken _mintBurnToken = IMintBurnToken(_burnToken)

ë ;

434 require(

435 _mintBurnToken.transferFrom(

436 msg.sender ,

437 address(_localMinter),

438 _amount

439),

440 "Transfer operation failed"

441);

442 _localMinter.burn(_burnToken , _amount);

443

444 // Format message body

445 bytes memory _burnMessage = BurnMessage._formatMessage(

446 messageBodyVersion ,

447 Message.addressToBytes32(_burnToken),

448 _mintRecipient ,

449 _amount ,

450 Message.addressToBytes32(msg.sender)

451);

452

453 uint64 _nonceReserved = _sendDepositForBurnMessage(

454 _destinationDomain ,

455 _destinationTokenMessenger ,

456 _destinationCaller ,

457 _burnMessage

458);

459

460 emit DepositForBurn(

461 _nonceReserved ,

462 _burnToken ,

463 _amount ,

464 msg.sender ,

465 _mintRecipient ,

466 _destinationDomain ,

467 _destinationTokenMessenger ,

468 _destinationCaller

469);

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

470

471 return _nonceReserved;

472 }

Proof of Concept:

1. All necessary contracts are deployed: MessageTransmitter, Token-

Messenger, TokenMinter, and MockMintBurnToken for the source and

destination.

2. Configure all contracts, set burnLimitPerTransaction to 1016. Link

token pairs between source and destination.

3. As Source User 4 depositForBurn 1016 of tokens for Destination User

6.

4. As Source User 4 again depositForBurn 1016 of tokens for Destination

User 6.

5. As Source User 4 calls replaceDepositForBurn for the message from

step 4 with the destination caller set to Destination User 7. Set

the mint recipient as zero address.

6. As Destination User 6 receiveMessage from the step 3.

7. As Destination User 7 receiveMessage from the step 5.

8. Observe the users’ balances. Note that Destination User 7 did not

receive a cross-chains transfer.

Recommendation:

It is recommended to add a validation check for the newMintRecipient

parameter against the zero address value to remove the risk related to

human errors.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

SOLVED: The Circle team solved this issue in commit

f2cc3448aaa827a029825a2f47256f86615f9744: the newMintRecipient address

is now checked against the zero-byte value.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/circlefin/evm-bridge-contracts/commit/f2cc3448aaa827a029825a2f47256f86615f9744

3.3 (HAL-03) LACK OF
TRANSFEROWNERSHIP PATTERN - LOW

Description:

The transfer of current ownership for the TokenMinter.sol, TokenMessenger

.sol, and MessageTransmitter.sol contracts implies that the current owner

calls the transferOwnership() function from the Ownable contract:

Listing 4: Ownable.sol

79 function transferOwnership(address newOwner) external

ë onlyOwner {

80 require(

81 newOwner != address (0),

82 "Ownable: new owner is the zero address"

83);

84 emit OwnershipTransferred(_owner , newOwner);

85 setOwner(newOwner);

86 }

Suppose the nominated EOA account is invalid. In that case, the owner

can accidentally transfer ownership to an uncontrolled account, losing

access to all functions with the onlyOwner modifier.

The same issue is identified in the Attestable.sol contract.

Listing 5: Attestable.sol

118 function updateAttesterManager(address newAttesterManager)

119 external

120 onlyAttesterManager

121 {

122 require(

123 newAttesterManager != address (0),

124 "Invalid attester manager address"

125);

126 _setAttesterManager(newAttesterManager);

127 emit AttesterManagerUpdated(newAttesterManager ,

ë newAttesterManager);

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

128 }

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is recommended to implement a zero address check in the function and

a two-step process where the owner nominates an account. The nominated

account needs to call an acceptOwnership() function to transfer ownership

to be fully successful. This ensures that the nominated EOA account is

valid and active.

Remediation Plan:

SOLVED: The Circle team solved this issue in commit

f2cc3448aaa827a029825a2f47256f86615f9744: the Ownable2Step contract is

now used across the solution.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/circlefin/evm-bridge-contracts/commit/f2cc3448aaa827a029825a2f47256f86615f9744

3.4 (HAL-04)
REMOVEREMOTETOKENMESSENGER EMITS
EVENT BASING ON USER INPUT -
INFORMATIONAL

Description:

The removeRemoteTokenMessenger() function of the TokenMessenger.sol

contract emits the RemoteTokenMessengerRemoved event based on the

user input, while the tokenMessenger value could be obtained from

the remoteTokenMessengers collection. In rare cases, the present

implementation may result in emitting events with inaccurate data.

Listing 6: TokenMessenger.sol

94 /**

95 * @notice Emitted when a remote TokenMessenger is removed

96 * @param domain remote domain

97 * @param tokenMessenger TokenMessenger on remote domain

98 */

99 event RemoteTokenMessengerRemoved(

100 uint32 indexed domain ,

101 bytes32 indexed tokenMessenger

102);

Listing 7: TokenMessenger.sol (Lines 364,375)

364 function removeRemoteTokenMessenger(uint32 domain , bytes32

ë tokenMessenger)

365 external

366 onlyOwner

367 {

368 // No TokenMessenger set for given remote domain.

369 require(

370 remoteTokenMessengers[domain] != bytes32 (0),

371 "No TokenMessenger set"

372);

373

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

374 delete remoteTokenMessengers[domain];

375 emit RemoteTokenMessengerRemoved(domain , tokenMessenger);

376 }

Recommendation:

It is recommended to emit the RemoteTokenMessengerRemoved event based on

the value obtained from the contract data rather than user input.

Remediation Plan:

SOLVED: The Circle team solved this issue in commit

f2cc3448aaa827a029825a2f47256f86615f9744: the RemoteTokenMessengerRemoved

event is now based on the value obtained from the contract’s data.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/circlefin/evm-bridge-contracts/commit/f2cc3448aaa827a029825a2f47256f86615f9744

3.5 (HAL-05) UPDATEATTESTERMANAGER
EMITS EVENT WITH INCORRECT DATA -
INFORMATIONAL

Description:

The updateAttesterManager() function from the Attestable.sol contract

emits the AttesterManagerUpdated event using the newAttesterManager

input parameter twice, instead of the _attesterManager parameter for

previousAttesterManager.

Listing 8: Attestable.sol

43 /**

44 * @dev Emitted when attester manager address is updated

45 * @param previousAttesterManager representing the address of

ë the previous attester manager

46 * @param newAttesterManager representing the address of the

ë new attester manager

47 */

48 event AttesterManagerUpdated(

49 address indexed previousAttesterManager ,

50 address indexed newAttesterManager

51);

Listing 9: Attestable.sol (Lines 118,127)

118 function updateAttesterManager(address newAttesterManager)

119 external

120 onlyAttesterManager

121 {

122 require(

123 newAttesterManager != address (0),

124 "Invalid attester manager address"

125);

126 _setAttesterManager(newAttesterManager);

127 emit AttesterManagerUpdated(newAttesterManager ,

ë newAttesterManager);

128 }

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to emit the AttesterManagerUpdated with previous and

new address values.

Remediation Plan:

SOLVED: The Circle team solved this issue in commit

f2cc3448aaa827a029825a2f47256f86615f9744: the AttesterManagerUpdated

event is emitted with previous and new address values.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/circlefin/evm-bridge-contracts/commit/f2cc3448aaa827a029825a2f47256f86615f9744

3.6 (HAL-06) GAS OVER-CONSUMPTION
IN LOOPS - INFORMATIONAL

Description:

In all the loops, the counter variable is incremented using i++. It is

known that, in loops, using ++i costs less gas per iteration than i++.

Code Location:

Attestable.sol

- Line 233: for (uint256 i = 0; i < signatureThreshold; i++){

Proof of Concept:

For example, based in the following test contract:

Listing 10: Test.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.9;

3

4 contract test {

5 function postiincrement(uint256 iterations) public {

6 for (uint256 i = 0; i < iterations; i++) {

7 }

8 }

9 function preiincrement(uint256 iterations) public {

10 for (uint256 i = 0; i < iterations; ++i) {

11 }

12 }

13 }

Differences in the gas costs:

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of

an uint variable inside a loop to save some gas. This is not applicable

outside of loops.

Remediation Plan:

SOLVED: The Circle team solved this issue in commit

f2cc3448aaa827a029825a2f47256f86615f9744: the solution now uses ++i to

increment the value of a uint variable inside a loop.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/circlefin/evm-bridge-contracts/commit/f2cc3448aaa827a029825a2f47256f86615f9744

3.7 (HAL-07) UNNEEDED
INITIALIZATION OF UINT256 VARIABLES
TO 0 - INFORMATIONAL

Description:

As i is an uint256, it is already initialized to 0. uint256 i = 0

reassigns the 0 to i which wastes gas.

Code Location:

Attestable.sol

- Line 233: for (uint256 i = 0; i < signatureThreshold; i++){

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to not initialize uint256 variables to 0 to save some

gas. For example, use instead:

for (uint256 i; i < proposal.targets.length; ++i).

Remediation Plan:

SOLVED: The Circle team solved this issue in commit

f2cc3448aaa827a029825a2f47256f86615f9744: the solution now does not ini-

tialize a uint variable to 0 value.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/circlefin/evm-bridge-contracts/commit/f2cc3448aaa827a029825a2f47256f86615f9744

31

MANUAL TESTING

Halborn performed several manual tests in the MessageTransmitter.sol,

TokenMessenger.sol, TokenMinter.sol, TokenController.sol, Attestable.sol

contracts:

32

MA
NU

AL
TE

ST
IN

G

33

MA
NU

AL
TE

ST
IN

G

34

MA
NU

AL
TE

ST
IN

G

35

MA
NU

AL
TE

ST
IN

G

The manual tests were focused on testing the main functions of these

contracts:

- addLocalTokenMessenger()

- addLocalMinter()

- setMaxBurnAmountPerTransaction()

- linkTokenPair()

- unlinkTokenPair()

- addRemoteTokenMessenger()

- depositForBurn()

- receiveMessage()

- depositForBurnWithCaller()

- replaceMessage()

- enableAttester()

- isEnabledAttester()

- setSignatureThreshold()

Apart from one medium finding, no significant issues were found during

the manual tests.

36

MA
NU

AL
TE

ST
IN

G

37

AUTOMATED TESTING

5.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of cer-

tain areas of the scoped contracts. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the con-

tracts in the repository and was able to compile them correctly into their

ABI and binary formats, Slither was run on the all-scoped contracts. This

tool can statically verify mathematical relationships between Solidity

variables to detect invalid or inconsistent usage of the contracts’ APIs

across the entire code-base.

Slither results:

BurnMessage.sol

Message.sol

MessageTransmitter.sol

38

AU
TO

MA
TE

D
TE

ST
IN

G

Pausable.sol

TokenController.sol

TokenMessenger.sol

39

AU
TO

MA
TE

D
TE

ST
IN

G

TokenMinter.sol

40

AU
TO

MA
TE

D
TE

ST
IN

G

TypedMemView.sol

41

AU
TO

MA
TE

D
TE

ST
IN

G

• Majority of identified issues are related to third-party libraries.

• Reentrency issues are false positives.

• Several informational issues related to solidity naming convention

were identified.

• Attestable.sol, Ownable.sol, Rescuable.sol yielded no result.

• No major issues were found by Slither.

42

AU
TO

MA
TE

D
TE

ST
IN

G

https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

5.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

Attestable.sol

43

AU
TO

MA
TE

D
TE

ST
IN

G

BurnMessage.sol

Message.sol

MessageTransmitter.sol

44

AU
TO

MA
TE

D
TE

ST
IN

G

45

AU
TO

MA
TE

D
TE

ST
IN

G

Rescuable.sol

46

AU
TO

MA
TE

D
TE

ST
IN

G

TokenController.sol

TokenMessenger.sol

TokenMinter.sol

47

AU
TO

MA
TE

D
TE

ST
IN

G

TypedMemView.sol

• Majority of identified issues are related to third-party libraries.

• Pausable.sol, Ownable.sol yielded no result.

• No major issues were discovered by Mythx software.

48

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	MANUAL TESTING
	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results

