
Circle Gateway
Security Assessment

May 31st, 2025 — Prepared by OtterSec

Nicholas R. Putra nicholas@osec.io

Michael Debono mixy1@osec.io

Zhenghang Xiao kiprey@osec.io

Robert Chen r@osec.io

mailto:nicholas@osec.io
mailto:mixy1@osec.io
mailto:kiprey@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 2

General Findings 3

OS-CGT-SUG-00 | Deposit Failure due to Permit Front-Running 4

OS-CGT-SUG-01 | Code Maturity 5

Appendices

Vulnerability Rating Scale 6

Procedure 7

© 2025 Otter Audits LLC. All Rights Reserved. 1 / 7

01 — Executive Summary

Overview

Circle Finance engaged OtterSec to assess the circle-gatewaycircle-gateway contracts. This assessment was

conducted between May 12th and May 24th, 2025. For more information on our auditing methodology,

refer to Appendix B.

Key Findings

We produced 2 findings throughout this audit engagement.

In particular, we highlighted the possibility of front-running a user’s deposit by utilizing their permit

signature, resulting in the user’s transaction to fail (OS-CGT-SUG-00). We also made suggestions

regarding inconsistencies in the code base and ensuring adherence to coding best practices. (OS-CGT-

SUG-01).

Scope

The source code was delivered to us in a Git repository at https://github.com/circlefin/evm-gateway-

contracts. This audit was performed against commit f24a7d1. Follow-up review was performed against

commit ca774f1 and 5b5446f.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

circle-gateway
allows users to instantly mint USDC on any supported chain after de-

positing it on a source chain, using an off-chain authorization system.

© 2025 Otter Audits LLC. All Rights Reserved. 2 / 7

https://github.com/circlefin/evm-gateway-contracts
https://github.com/circlefin/evm-gateway-contracts
https://github.com/circlefin/evm-gateway-contracts/tree/f24a7d19bf6f9458443991961a174de87edeee91
https://github.com/circlefin/evm-gateway-contracts/commit/ca774f13f51d924c58d48d40ba6a5735370af26b
https://github.com/circlefin/evm-gateway-contracts/commit/5b5446f5c622901acaea6a875b022425eecb0c13

02 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-CGT-SUG-00
It is possible to front-run a user’s depositdeposit by utilizing their permitpermit signature

first, resulting in the user’s transaction to fail.

OS-CGT-SUG-01
Suggestion regarding inconsistencies in the code base and ensuring adherence

to coding best practices.

© 2025 Otter Audits LLC. All Rights Reserved. 3 / 7

Circle Gateway Audit 02 — General Findings

Deposit Failure due to Permit Front-Running OS-CGT-SUG-00

Description

If a user calls permitpermit to approve token transfer, then follows it with depositdeposit , an attacker may

front-run the depositdeposit utilizing the same permitpermit signature. Since permitpermit grants immediate approval,

anyone may utilize it before the intended user’s transaction is mined. Consequently, when the user’s own

depositdeposit executes, it will fail due to insufficient allowance/balance.

Patch

CircleCircle has acknowledged this as an acceptable risk, given that no effective remediation is currently

feasible. Since the contract cannot distinguish between a utilized and an invalid permit, it requires a valid

permit for deposits. Falling back to the existing allowances will introduce more severe risks, such as

unauthorized fund transfers from users who have previously approved GatewayWalletGatewayWallet for their USDCUSDC .

© 2025 Otter Audits LLC. All Rights Reserved. 4 / 7

Circle Gateway Audit 02 — General Findings

Code Maturity OS-CGT-SUG-01

Description

1. Denylist::unDenylistDenylist::unDenylist , the documentation incorrectly states it may only be called by the ownerowner
, while the code enforces access via the denylisterdenylister role. This mismatch is misleading. The

docstring should be corrected to reflect the actual access control and maintain consistency between

implementation and specification.

>_ src/modules/common/Denylist.sol solidity

/// Allows a previously-denylisted address to interact with the contract again
///
/// @dev May only be called by the `owner` role
///
/// @param addr The address to be allowed
function unDenylist(address addr) external onlyDenylister {

_denylist(addr, false);
emit UnDenylisted(addr);

}

2. The signature length check in _verifyBurnerSignature_verifyBurnerSignature is redundant and may be removed since

ECDSA.recoverECDSA.recover already checks this.

3. In depositFordepositFor , the documentation incorrectly states it transfers funds from the depositordepositor ,

while the code actually transfers funds from the sendersender .

Remediation

Implement the above-mentioned suggestions.

Patch

The first and second issues have been resolved in ca774f1, and the third is acknowledged.

© 2025 Otter Audits LLC. All Rights Reserved. 5 / 7

https://github.com/circlefin/smart-wallet-contracts-private/commit/ca774f13f51d924c58d48d40ba6a5735370af26b

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2025 Otter Audits LLC. All Rights Reserved. 6 / 7

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2025 Otter Audits LLC. All Rights Reserved. 7 / 7

	Executive Summary
	Overview
	Key Findings
	Scope

	General Findings
	[8.75em][l]OS-CGT-SUG-00 | Deposit Failure due to Permit Front-Running
	[8.75em][l]OS-CGT-SUG-01 | Code Maturity

	Appendices
	Vulnerability Rating Scale
	Procedure

