

PRIVATE

Code Assessment

of the Perimeter

Smart Contracts

February 22, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 13

4 Terminology 14

5 Findings 15

6 Resolved Findings 17

7 Informational 24

8 Notes 29

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Rachel,

Thank you for trusting us to help Circle with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Perimeter according to
Scope to support you in forming an opinion on their security risks.

Circle implements Perimeter, which can be used as on-chain infrastructure to facilitate the operations of
loans that are secured off-chain. This includes custody and transfer of lender's funds, interest payments,
and fee handling.

The most critical subjects covered in our audit are asset solvency, functional correctness, and access
control. The general subjects covered are fee handling, event handling, gas efficiency, and
upgradeability. Several Possible Gas Optimizations exist that would increase gas efficiency.
Furthermore, the implementation of EIP-4626 can be improved: EIP-4626 Non-Compliance. All other
mentioned subjects show a high level of security.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 5

• Code Corrected 4

• Code Partially Corrected 1

Low -Severity Findings 7

• Code Corrected 5

• Specification Changed 1

• Risk Accepted 1

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Perimeter repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V
Date Commit Hash Note

1 01 January 2023 384571416209d08623c6ace9422613fc8970475d Initial Version

2 17 February 2023 cc1ef9d85e085fa0fbf286037ee725e69cc62419 Second Version

For the solidity smart contracts, the compiler version 0.8.16 was chosen.

Correct handling of ERC-20 underlying tokens was only considered for USDC and EUROC.

2.1.1 Excluded from scope
External libraries like the OpenZeppelin contracts and contracts-upgradeable.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Circle offers a lending protocol that allows under-collateralized loans. At its core, the protocol implements
an EIP-4626-compliant vault (the Pool) that can hold a single token. Tokens are whitelisted by the
protocol owner and each Pool is created by a Pool Admin that manages the loans and collects fees.
Lenders can deposit tokens to the Pool and receive non-transferable ERC-20 Pool Tokens. The Pool
Admin uses the funds of the lenders to create loans that can optionally be collateralized on-chain with
ERC-20 and ERC-721 tokens. On-chain collateralization is, however, not enforced and no liquidation
mechanism is implemented. The Pool Admin can claim the collateral when a loan is defaulted and handle
its liquidation as needed. The protocol is designed to work with trusted entities. For this reason, the core
protocol is extended with a permission system using Verite on-chain identity management. In this
permissioned version, Pool Admins, borrowers, and lenders all have to be identified by trusted verifiers
who issue signatures following a certain scheme. If this scheme is accepted by the Pool, the signature
can be used to get verified on this Pool.

Pool Admins issue loans to identified borrowers and negotiate the terms of the loan off-chain. The
repayment of loans must be enforceable through off-chain agreements, as the smart contracts do not
enforce repayment. Interest payments and the final repayment of the loan's principal happen on-chain
and increase the Pool's balance, resulting in accrued interest for lenders.

If a borrower defaults on a loan, the Pool Admin can signal the default on-chain. At this point, the loan's
principal is no longer counted towards the Pool's assets and results in a loss for the lenders. To ease the

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

danger of defaults, Pool Admins have to deposit a certain amount of tokens as first loss capital before
deposits are activated. These tokens are used to compensate users in case of a default.

Lenders wishing to withdraw their tokens have to request a withdrawal first. Withdrawal requests are
periodically served, but only a certain amount becomes available per period depending on the settings
the Pool Admin has created the Pool with.

2.2.1 Contracts
The following sections discuss the contracts in detail:

ServiceConfiguration

The main contract defining all protocol-wide settings and roles is called ServiceConfiguration. It is
operated by the deployer of the Perimeter protocol and implements pausing functionality, token
whitelisting, First Loss handling, and LoanFactory verification.

The ServiceConfiguration also defines a protocol fee but it is set to 0 and never used.

Factories

The contracts are typically deployed by factories (except ServiceConfiguration and
ToSAcceptanceRegistry) as Beacon Proxies. The Factories store the address of the Beacon
implementation. Some Factories (e.g., the LoanFactory) also store the addresses of created contracts
for verification purposes.

Vault

Vaults are simple contracts that hold tokens. These tokens can then be transferred out by the owner of
the contract using the methods withdrawERC20 and withdrawERC721. Different Vaults are created
upon initialization of the base contracts:

• firstLossVault is owned by the PoolController and contains the funds for first loss
protection.

• collateralVault holds the posted collateral of a Loan.

• fundingVault contains the tokens that can be withdrawn by a borrower of a Loan.

• feeVault receives the Service and Origination fees that can be withdrawn by the Pool Admin.

Loan

A Loan is created by the LoanFactory. It encapsulates the settings and vaults for a single Loan
catered to a single borrower. This loan can have one of two types:

1. Fixed: A Fixed Loan has a pre-determined end date. Principal can be paid back earlier but the
interest over the whole period has to be paid back completely nonetheless. To start the Loan, the
borrower has to withdraw the full principal amount.

2. Open: An Open Loan can be paid back at any time. It can also be called back by the Pool Admin at
any time. The borrower is not required to withdraw the full Loan amount and can pay back parts of
the Loan amount during the runtime. The interest payments are, however, not reduced by this
behavior. The Pool Admin callback functionality is not currently implemented. A Callback can be
signaled on-chain but must be enforced off-chain (or by marking the Loan as defaulted).

A created Loan runs through different stages:

1. Requested: After Loan creation, the Loan is in this stage awaiting funding from the Pool. At this
stage, the borrower can call cancelRequested to cancel the loan issuance.

2. Canceled: Non-active loans can be canceled to reach this stage.

3. Collateralized: This optional stage is reached after the borrower either deposits ERC-20
tokens via postFungibleCollateral or ERC-721 tokens via postNonFungibleCollateral
as collateral in the Requested stage. The functions can also be used in later stages to add or

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

increase a collateral position. The loan can still be canceled by the borrower in this stage, but only
after a certain timestamp (dropDeadTimestamp) has been reached. This is done by calling
cancelCollateralized. Collateral is kept in the Loan's collateralVault.

4.

Version 2

Funded: To reach this stage, the Pool Admin calls fundLoan in the PoolController (explained
later) with the Loan address as argument. If the associated Pool holds enough funds, the principal
is transferred to the Loan's fundingVault. Funded Loans can be canceled either by the borrower
or by the Pool Admin (in , the Pool Admin can only call this function via the
PoolController) using cancelFunded. In both cases, the dropDeadTimestamp has to be
reached.

5. Active: As soon as the borrower calls drawdown on a Funded Loan, this stage is reached. From
this point on, the borrower owes interest payments in fixed intervals that can be paid using the
completeNextPayment function. Active Loans can not be canceled anymore.

6. Matured: The borrower can call completeFullPayment and pay back the principal plus any
interest that has not been paid yet. In the case of a Fixed Loan, this includes all future payments
until the end date of the Loan. In case of an Open Loan, this includes the part of the current
payment from period start to the current timestamp.

7. Defaulted: If a borrower does not pay interest in time, the Pool Admin has the possibility of
defaulting the Loan on-chain by calling defaultLoan in the PoolController. Performing this
action lies at the sole discretion of the Pool Admin and cannot be reversed. If the Loan enters this
stage, the outstanding principal is removed from the Pool's assets and lenders incur a loss.

Version 2

When a loan reaches the Canceled or Matured stage, the borrower is allowed to withdraw the posted
collateral. If it reaches the Defaulted stage, the Pool Admin can withdraw the collateral instead. Both
use the function claimCollateral for this purpose (in , the Pool Admin can only call this
function via the PoolController.).

For Open Loans, three additional functions are used:

• paydownPrincipal can be used by the borrower to repay some of the principal during the Loan
runtime.

•

Version 2

reclaimFunds can be used by the Pool Admin to transfer principal of an Open Loan that has not
been drawn down or was repaid early back to the Pool. If an Open Loan has been defaulted, the
Pool Admin also has to call this function to ensure that all funds return to the Pool. If an Open Loan
has matured but some funds have not been drawn down before, the funds also have to be sent back
manually by the Pool Admin. In , this function is only callable by the PoolController.

•
Version 2

markCallback can be used by the Pool Admin to signal on-chain that the Loan has been recalled.
In , this function is only callable by the PoolController.

A Loan can only be repaid by the borrower's address. If the borrower loses their keys, they will have to
send the missing funds to the Pool Admin that can deposit the amount to the firstLossVault and
then default the Loan.

Pool

A Pool is created by the PoolFactory with various settings including the fee percentages, the
underlying token (whitelisted by the ServiceConfiguration), and the Withdraw Gate (explained
below). Corresponding PoolController and WithdrawController are created and associated with
the Pool. The creator is set as the Pool Admin in the PoolController. This privilege cannot be
transferred to another address.

The Pool implements all EIP-4626 functions and some additional functions that have been derived from
the standard:

• deposit / mint allow lenders to transfer funds to the protocol in exchange for Pool Tokens
(shares).

• requestRedeem / requestWithdraw allows lenders to create withdrawal requests for their assets
that can be redeemed after some time.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• cancelRedeemRequest / cancelWithdrawRequest allows lenders to abort running withdrawal
requests. This is only possible for assets that have not been marked as withdrawable yet.

• withdraw / redeem allow lenders to redeem assets that have been marked as withdrawable after a
withdrawal request.

• Version 2In , the Pool Admin can withdraw fees with the function withdrawFeeVault.

The Pool also offers a snapshot function that allows any user to update withdrawal snapshots when a
new period is started. This is needed to ensure snapshots can be generated even when no other
interactions happen on the contracts for a longer duration.

PoolController

Each Pool creates a PoolController on initialization. The Pool Controller allows a Pool Admin to
manage the associated Pool. The Pool Controller handles the life-cycle of the Pool with the following
stages:

• Initialized: In this stage, the Pool Admin can change most of the Pool settings except the First
Loss amount and Withdraw Request duration.

• Active: By calling depositFirstLoss and transferring the First Loss amount to the
firstLossVault, the Pool Admin can activate the Pool. In this stage, Loans can be funded using
fundLoan and defaulted using defaultLoan. More First Loss tokens can also be transferred.

• Closed: Each Pool has an end date. As soon as this date is reached, the Closed stage is
automatically reached. In this stage, the Withdraw Gate is automatically set to 100% and the
Withdraw Period duration is set to 1 day (or less, if it was less before) allowing users to withdraw all
of their funds at once, given that the funds are already available (i.e., all Loan principals have been
paid back). If all Loans have been paid back, the Pool Admin can now also call
withdrawFirstLoss to get the First Loss amount (and possible accrued First Loss Fees) back.

Using claimFixedFee, the Pool Admin can also periodically withdraw a fee that is taken directly from
the Pool funds.

WithdrawController

Each Pool creates a WithdrawController. It encapsulates the state of withdrawal requests and all
associated data like snapshots. State-changing functions are only callable by the Pool and are used for
snapshotting, requesting withdrawals, and actual withdrawals.

VeriteAccessControl

VeriteAccessControl is an abstract contract that is used to verify Verite signatures. For this purpose,
the admin of the contract can add and remove trusted verifiers whose signatures are accepted as
verification proof. This is done using the functions addTrustedVerifier and
removeTrustedVerifier. The admin can also enable or disable accepted Verite schemas (JSON
representations of what is verified. These include at least an attribute and a URL to the process
used) using addCredentialSchema and removeCredentialSchema.

Users with a valid Verite signature that has been issued by one of the trusted verifiers using one of the
allowed schemas can call verify to get a verification entry. The isAllowed function of the contract
now returns true for their address. Once verified, verifications are checked on each interaction with the
permissioned contracts as they are only valid for a limited time.

ToSAcceptanceRegistry

The ToSAcceptanceRegistry allows any user to accept a given terms-of-service URL on-chain by
calling acceptTermsOfService. The terms-of-service URL can be updated by the protocol operators
using updateTermsOfService.

PoolAccessControl

The PoolAccessControl is used for both lenders and borrowers to be verified for the permissioned
part of the protocol. It extends the VeriteAccessControl with a ToSAcceptanceRegistry. Only

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

after accepting the terms, users can verify themselves. Additionally, it allows the Pool Admin to allow
certain addresses without using the Verite system by calling allowParticipant.

PoolAdminAccessControl

The PoolAdminAccessControl contract is used for Pool Admins to be verified for the permissioned
part of the protocol. It extends VeriteAccessControl with a ToSAcceptanceRegistry. Only after
accepting the terms, Pool Admins can verify themselves.

Permissioned Contracts

The following extensions exist for the permissioned part of the protocol:

• PermissionedPool allows access to some of its state-changing functions only for lenders verified
in the PoolAccessControl contract created upon initialization.

• PermissionedLoan allows access to some of its state-changing functions only for borrowers
verified in the PoolAccessControl contract of the corresponding Pool.

• PermissionedServiceConfiguration exposes a new field that returns a
PoolAdminAccessControl instance.

• PermissionedPoolController allows access to its state-changing functions only for Pool
Admins verified in the PoolAdminAccessControl contract returned by the associated
ServiceConfiguration.

Lenders and borrowers are verified through the same contract. Therefore, each lender can also be a
borrower and vice-versa.

2.2.2 Snapshot algorithm
A crucial part of the protocol is the snapshot algorithm that is handled by the WithdrawController.
Withdrawal requests are handled in the following manner:

• The runtime of a Pool is divided into periods of equal length.

• A withdrawGate is set upon Pool creation (e.g., 25%) that determines how many tokens of the
currently available tokens (balance of the Pool minus assets that have already been marked as
withdrawable) can be withdrawn in each period.

• A user can perform withdrawal requests up to the full amount of shares they possess.

• In the period following a withdrawal request, the shares become eligible for withdrawal. The eligible
shares of all users combined are evaluated against the current assets and the withdrawGate and
a portion is marked as redeemable. These shares can now be withdrawn by each user.

• If not all eligible shares become redeemable in a period, they will be evaluated again in the next
period.

• Redeemable shares have a fixed exchange rate for assets that is determined at the end of a period.
At this point, the shares are not accruing any more yield. This rate can differ from the rate during the
withdrawal request as Loan payments still might arrive before the period ends.

Because withdrawal requests are likely scattered over different periods and can also be redeemed after
an arbitrary number of periods, Circle developed an algorithm that allows to calculate a single user's
redeemable shares at any period in constant time. This is achieved in the following way:

• Each withdrawal request is added to a global state.

• At the beginning of each period, the ratio of eligible shares to shares that become redeemable is
calculated in this global state.

• This ratio is stored in a snapshot in a way that allows the application of ratios from multiple periods
at once to a user withdrawal request when it is necessary (e.g., on another withdrawal request or an
actual withdrawal).

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

This is illustrated by the following formula:

ratio1 + (1 - ratio1) * ratio2 + (1 - ratio1) * (1 - ratio2) * ratio3 + ...

ratio1 indicates the ratio in period 1 etc. (in period 0, the ratio is 0 as no eligible shares are available
yet). Each period, the previous part of the formula is saved into a snapshot:

• Period 1: ratio1

• Period 2: ratio1 + (1 - ratio1) * ratio2

• Period 3:
ratio1 + (1 - ratio1) * ratio2 + (1 - ratio1) * (1 - ratio2) * ratio3

• ...

Additionally, the factor of the current period's ratio is saved separately:

• Period 1: 1

• Period 2: (1 - ratio1)

• Period 3: (1 - ratio1) * (1 - ratio2)

• ...

Sums converge to 1 RAY (i.e., 1e27) and factors converge to 0. As soon as the factor hits 0, it is reset to
1 RAY. At this point, the sums will start to converge to 2 RAY.

To apply all ratios of the periods from when a withdrawal request was created up until the current period,
we can multiply the eligible shares with
sum of the current period + sum of the starting period and
divide the result by factor of the starting period. For example:

• ratio1 = 0.5

• ratio2 = 0.25

• ratio3 = 0.5

• ratio1 + (1 - ratio1) * ratio2 + (1 - ratio1) * (1 - ratio2) * ratio3 = 0.8125

If we want to find the redeemable shares in period 3 for 500 shares that were requested in period 1, we
calculate: (500 * (0.8125 - 0.5)) / 0.5 = 312.5

The same can be achieved (but not in constant time) by applying the ratio for each period to the eligible
shares:

• Period 1: Withdrawal request performed.

• Period 2: 500 eligible shares * 0.25 = 125. 375 eligible shares remain, 125 shares are
now redeemable.

• Period 3: 375 eligible shares * 0.5 = 187.5. 187.5 eligible shares remain, 312.5 shares
are now redeemable.

Additionally, each snapshot contains the period sums with the assets <-> shares exchange rate factored
in so that the amount of withdrawable assets can also be easily calculated.

Version 2In , the described algorithm has been replaced: The ratio of each period is now directly stored in
the period's snapshot. To bring user states up to date, eligible shares have to be multiplied with the ratio
of each period between the last snapshot period the state was changed and the current period. Users
have to manually update their states to be able to create further withdrawal requests or use all of their
redeemable shares.

2.2.3 Fees
Perimeter defines a wide array of different fees to accommodate most use cases:

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

• First Loss Fee: This fee is set on the protocol level and is taken as a percentage of Loan payments.
It is used to cover losses of defaulted loans. After a Pool has closed, the Pool Admin will receive
these fees if they have not been used to cover.

• Service Fee: This fee is chosen by the Pool Admin for a given Pool and taken as a percentage of
Loan payments. It is sent to the feeVault for later collection by the Pool Admin.

• Origination Fee: This fee is set for each Loan individually and is taken as a percentage of the Loan
principal and paid on top of an interest payment. It is calculated for each year of the Loan duration
and sent to the feeVault for later collection by the Pool Admin.

•
Version 1

Late payment Fee: This fee is a constant fee set for each Loan individually and is charged when a
payment has not been made in time. In , it is sent to the Pool.

• Request Fee: This fee is taken on each withdrawal request and is a percentage of the shares that
are requested. The shares are burnt.

• Request Cancellation Fee: This fee is taken on each withdrawal cancellation request and is a
percentage of the shares that are canceled. The shares are burnt.

2.2.4 Roles & Trust Model
Internally, four different roles are defined:

• DEFAULT_ADMIN_ROLE is assigned to the address that deploys the ServiceConfiguration.
This address can then assign the remaining three roles freely.

• OPERATOR_ROLE: Operators can update various data in the ServiceConfiguration, including
the whitelisted tokens, minimum First Loss and the First Loss Fee, as well as valid Loan Factories
and Terms-Of-Service Registries. In the permissioned case, Operators can also set up the
PoolAdminAccessControl for verification of Pool Admins.

• PAUSER_ROLE: Accounts assigned to this role can pause and unpause all the contracts created with
the given ServiceConfiguration instance.

• DEPLOYER_ROLE: Deployers can upgrade all contracts created with the given
ServiceConfiguration instance.

Circle claims that the Deployer role will be maintained only for critical security upgrades and might be
discarded sometime in the future. New feature upgrades will be deployed using a set of new Factory
contracts and implementations.

Using the PoolFactory, anyone can create a new Pool. Using the PermissionedPoolFactory,
Verite verified users can create a new Pool. The Pool deployer automatically becomes the Pool Admin
of the Pool. This role cannot be transferred to another account and comes with a set of enormous
privileges that require full trust. Pool Admins can...

• ... set and change fees, including the fixed fee that allows them to directly retrieve any amount of
funds out of the Pool.

• ... set the withdrawGate, allowing them to completely close withdrawals in active Pools.

• ... adjust the Pool Capacity, allowing them to disable deposits at any time.

• ... move the Pool end date to a prior date.

• ... withdraw the first loss amount after a Pool has closed and all Loans have ended.

• ... fund any Loan with the available resources in the Pool.

• ... default any loan on-chain.

• ... cancel Funded Loans after the dropDeadTimestamp has been reached.

• ... claim collateral of a Loan after it has defaulted.

• ... reclaim funds of Open Loans to the Pool.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Most notable is the ability of a Pool Admin to issue loans arbitrarily, theoretically allowing them to drain a
Pool's funds and keep the tokens, as well as marking a Loan as defaulted and claiming the collateral.

If a Pool Admin loses their keys, on-chain defaults are not possible anymore which results in users not
receiving First Loss in case a Loan is defaulted. Open Loan amounts that have not been withdrawn can
also not be sent back to the Pool with Loan.reclaimFunds.

For this reason, Pool Admins have to be completely trusted. Circle, therefore, claims to have plans to
deploy only the permissioned contracts on Mainnet in order to be able to verify the identity of Pool
Admins thoroughly.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Partially CorrectedEIP-4626 Non-Compliance

Low -Severity Findings 1

• Risk AcceptedToS Acceptance Registry Update

5.1 EIP-4626 Non-Compliance
Correctness Medium Version 1 Code Partially Corrected

A Pool implements the EIP-4626 Tokenized Vaults standard. Some code parts are, however, not fully
compliant with the standard as can be seen in the following list:

• convertToAssets and convertToShares revert when PoolLib.isSolvent returns false.
This is in violation of the requirement MUST NOT revert unless due to integer overflow caused
by an unreasonably large input.

• maxDeposit and maxMint revert on totalAvailableAssets > poolMaxCapacity which
violates the rule MUST NOT revert.

• maxDeposit, maxMint, maxWithdraw and maxRedeem do not return 0 when the Pool is paused.
This behavior is not allowed under the MUST factor in both global and user-specific limits, like if
deposits are entirely disabled (even temporarily) it MUST return 0 requirement.

• withdraw and redeem require the owner parameter to be equal to msg.sender. This makes the
scheme required by the rule MUST support a withdraw flow where the shares are burned from
owner directly where msg.sender has EIP-20 approval over the shares of owner. not possible.

• The first parameter of the events Withdraw and Deposit is named caller while the standard
requires it to be named sender.

• PermissionedPool.maxWithdraw and maxRedeem are not checking permissions. Since
permissions can invalidate after some time, the functions violate the requirement MUST factor in
both global and user-specific limits.

Code corrected:

• maxDeposit and maxMint no longer revert on underflow.

• maxDeposit, maxMint, maxWithdraw and maxRedeem now return 0 when the Pool is paused.

• The Withdraw and Deposit are now emitted with the correct parameter naming.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

• PermissionedPool.maxWithdraw and maxRedeem are now correctly checking permissions.

Code not corrected:

• withdraw and redeem still don't support EIP-20 approval for owner.

Risk accepted:

Circle accepts the risk of the convertToAssets and convertToShares non-compliance, stating:

We implemented nearly all the changes recommended in the finding, except for the convertToAssets()/shares() functions
reverted on Pool insolvency. Since that’s essentially a terminal state for the Pool, and the code change being non-trivial,
we opted to leave it as-is.

5.2 ToS Acceptance Registry Update
Design Low Version 1 Risk Accepted

PoolAccessControlFactory.create sets the tosAcceptanceRegistry in the newly created
PoolAccessControl contract from the value in ServiceConfiguration. This value cannot be
updated anymore. The value, however, can be updated in ServiceConfiguration. In
PermissionedPool, the poolAccessControl address cannot be updated either. This means, if the
ToSAacceptanceRegistry ever changes to a new address, permissioned pools can only be updated
by updating the beacon implementation of all PoolAccessControl instances.

Risk accepted:

Circle accepts the risk with the following statement:

We have no plans to introduce separate ToS Acceptance Registries, so it feels premature to build around that right now. We accept
the risk given that in a worst-case scenario, we could upgrade PoolAccessControl contracts to point to a new registry if needed.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedcancelFunded Counts Assets Twice

High -Severity Findings 2

• Code CorrectedWithdrawal DoS

• Code CorrectedfeeVault Stuck Funds

Medium -Severity Findings 4

• Code CorrectedFull Cancel Request Not Possible

• Code CorrectedLate Fees Do Not Go to First Loss Vault

• Code CorrectedMissing Permission Checks

• Code CorrectedpaymentDueDate Updated After Last Payment

Low -Severity Findings 6

• Code CorrectedCallback State Not Used

• Code CorrectedInconsistent State After Withdrawal Cancellation

• Code CorrectedMissing Sanity Checks

• Specification ChangedPool Tokens Not Transferable

• Code CorrectedcompleteFullPayment Return Value

• Code CorrectedonlyPoolAdmin Modifier

6.1 cancelFunded Counts Assets Twice
Correctness Critical Version 1 Code Corrected

Loan.cancelFunded does not call Pool.onLoanPrincipalReturned.

This means that outstandingPrincipals will not be reduced by the loan amount and the loan will be
counted twice in totalAssets.

This will increase the value of a pool share, allowing lenders to withdraw more assets than they
deposited, leading to the Pool becoming insolvent.

Code corrected:

LoanLib's returnCanceledLoanPrincipal now calls Pool.onLoanPrincipalReturned.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.2 Withdrawal DoS
Correctness High Version 1 Code Corrected

The snapshot algorithm creates snapshots in each period containing aggregation sums and differences
(as pointed out in the System Overview). Over time, the sums converge to 1 RAY while the differences
converge to 0. When the difference hits the 0 value, it is set to 1 RAY resulting in the whole process
starting from the beginning (the sums now converge to 2 RAY).

As the difference converges to 0, rounding errors intensify. If the difference is exactly 1, rounding errors
approach 100%: Eligible shares in the global state are converted to redeemable shares according to the
withdraw gate, while in the user state, no eligible shares are converted at all.

In the next call to WithdrawController.simulateSnapshot, the user's eligible shares are then
multiplied by the difference between the aggregation results (in RAY), multiplied with 1 RAY, divided by 1
and then divided by 1 RAY, leaving a number for redeemable shares that is orders of magnitude higher
than the actual requested shares of the user:

uint256 sharesRedeemable = withdrawState.eligibleShares.mul(
 endingSnapshot.aggregationSumRay - offsetSnapshot.aggregationSumRay
);
sharesRedeemable = sharesRedeemable
 .mul(offsetSnapshot.aggregationDifferenceRay > 0 ? PoolLib.RAY : 1)
 .div(
 offsetSnapshot.aggregationDifferenceRay > 0
 ? offsetSnapshot.aggregationDifferenceRay
 : 1
)
 .div(PoolLib.RAY);

The function then reverts on buffer underflow in the following section:

withdrawState.eligibleShares -= sharesRedeemable;

All functions (including Pool.withdraw) that calculate the user's withdrawal state will revert from this
point on.

This issue can be exploited by an attacker, with low cost:

To achieve a difference of exactly 1, an attacker has to perform a few withdrawal requests with amounts
below the withdrawal gate. The decimals of the amounts used in the request must sum up to 27 (the
decimals of RAY). Depending on the withdrawal gate and the deposited amounts, a difference of 1 can be
achieved in a few (~three) withdraw periods. The next withdrawal in any following period will result in at
least one user being unable to withdraw. All users performing withdrawal requests in the same period will
be affected. Withdrawal requests in the following periods will work as expected again.

Consider the following example:

• The withdrawal gate is 25%.

• The token has 6 decimals.

• User 1 deposits 40,000 tokens.

• User 2 deposits 40,000 tokens.

• An attacker deposits 20,010 tokens.

• In period 1, the attacker requests a withdrawal of 10,000 tokens.

• In period 2, the attacker requests a withdrawal of 10,000 tokens.

• In period 3, the attacker requests a withdrawal of 10 tokens minus 2 wei.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

• The difference is now 1 and the aggregation sum is 999999999999999999999999997.

• The attacker withdraws their whole balance.

• A few periods pass without any interaction.

• In period 10, user 1 requests a withdrawal of 40,000 tokens.

• In period 11, user 1 still has 0 withdrawable assets due to the rounding error.

• Starting from period 12, interactions with the contracts revert for user 1.

• In period 12, user 2 can request a withdrawal and everything works out as expected.

The attacker has performed a DoS attack on a subset of the protocol's users for a low cost: They paid
only the gas fees and the pool's request fees. If User 2 had also tried to withdraw in period 10, their funds
would be stuck too. If the attacker performs the attack in the last period before the end date of the pool,
chances are high that a large amount of users are affected as they try to withdraw immediately after the
pool closes. The attacker could repeat the attack by depositing again and making more withdrawal
requests.

Code corrected:

The snapshot algorithm has been replaced by a mechanism that saves the conversion rates of eligible
shares to redeemable shares individually. Users that want to request a withdrawal (or cancel requested
shares) are now required to manually update their state by calling claimSnapshots if their last action
was performed in a past period and their current state contains some eligible shares.

6.3 feeVault Stuck Funds
Correctness High Version 1 Code Corrected

Pool.initialize creates a feeVault. The owner of the Vault is set to the Pool. Only the owner
can withdraw funds from the Vault.

As Pool does not contain any function that withdraws from the feeVault, any funds sent to it will be
stuck.

Code corrected:

A function withdrawFeeVault has been added to the Pool, which can be called by the Pool Admin
through the PoolController to withdraw from the Fee Vault.

6.4 Full Cancel Request Not Possible
Correctness Medium Version 1 Code Corrected

A discrepancy between Pool.maxRequestCancellation and cancelRedeemRequest /
cancelWithdrawRequest leads to users not being able to cancel all of their requested (but not yet
redeemable) shares. Consider the following example:

• A user holds 500 shares on a Pool.

• Request fee is 0% and request cancellation fee is 10%.

• The user requests a withdraw for 500 shares. His requested shares are now 500.

• The user now decides to cancel the full withdrawal request.

• maxRequestCancellation returns 450.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

• The user calls cancelRedeemRequest with 450 shares.

• 45 shares are burned, 450 shares are removed from the withdrawal request.

• 5 tokens remain in the withdrawal request because the mentioned functions calculate fees in a
different way.

Code corrected:

PoolLib.calculateMaxCancellation now returns all requested / eligible shares (ignores fees).
When executing the cancellation, fees are burned, and then the requested amount is deducted from the
withdrawal state.

6.5 Late Fees Do Not Go to First Loss Vault
Correctness Medium Version 1 Code Corrected

The late payment fees are supposed to be a fixed amount that goes to the first loss vault.

However, they are instead paid to the Pool in completePayment.

Additionally, the documentation incorrectly states that "Late fees are [...] a percent of the payment
amount on interest." This is incorrect, as late fees are a fixed amount. In particular, if multiple late
payments are made at once using completeFullPayment(), the fee is only charged once.

Code corrected:

Late Payment Fees are now transferred to the First Loss Vault instead of the Pool.

6.6 Missing Permission Checks
Correctness Medium Version 1 Code Corrected

Contracts in the permissioned directory extend the base contracts by adding permission checking
using the Verite protocol. This is done by overriding dummy modifiers of the base contracts. As Verite
identities can expire, permissions have to be checked on each interaction. This is, however, not enforced
in all parts of the base contracts:

• Loan.cancelFunded does not check borrower and admin permissions.

• Loan.claimCollateral does not check borrower and admin permissions.

• Loan.reclaimFunds does not check admin permissions.

Code corrected:

Loan and PoolController have been refactored. The Pool Admin now only interacts with the Loan
via the PoolController, which enforces permissioning. It was clarified that permissions should not be
checked for the borrower on Loan.cancelFunded.

6.7 paymentDueDate Updated After Last Payment
Correctness Medium Version 1 Code Corrected

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

The paymentDueDate in Loan is updated after the last payment made through
completeNextPayment. This is incorrect as the loan should end in the period of the last payment. The
final paymentDueDate is one period after the loan end date. Repayment of principal within this period
will not be considered late, meaning there will be no late fee charged even though there should be.

Code corrected:

paymentDueDate is now only incremented if paymentsRemaining is larger than zero.

6.8 Callback State Not Used
Design Low Version 1 Code Corrected

The LifeCycleState enum contains the Callback state. This state is never used, as callbacks are
not enforced on-chain in the current version.

Code corrected:

The Callback state has been removed.

6.9 Inconsistent State After Withdrawal
Cancellation
Correctness Low Version 1 Code Corrected

WithdrawController.performRequestCancellation performs a
PoolLib.calculateWithdrawStateForCancellation update on both the requesting user's state
and the global state. The function first tries to match all requested shares before matching eligible
shares. If multiple users have open requested shares, the values differ between global and user state.
This leads to an inconsistency: If the user's cancellation request removes eligible shares, the global state
will have more requested shares removed. Consider the following example:

• User 1 has requested 500 shares and 500 shares are already eligible.

• User 2 has requested 500 shares and 500 shares are already eligible.

• The global state, therefore, has 1000 requested shares and 1000 eligible shares.

• User 1 now cancels 1000 shares.

• 0 requested shares and 1000 eligible shares remain in the global state.

• 500 requested shares and 500 eligible shares remain in user 2's state.

As soon as a new period starts, the data matches again.

While we have found no issues arising from this inconsistency, third party protocols might rely on the
data.

Code corrected:

The changes in user state are now saved in memory, so that an equal amount can be removed from the
global state.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

6.10 Missing Sanity Checks
Correctness Low Version 1 Code Corrected

The following checks are not performed, leading to misconfiguration possibilities:

• LoanFactory.createLoan allows the creation of a Loan that does not match the
liquidityAsset of its Pool.

• PoolFactory.createPool does not check that serviceFeeBps is lower than 10,000.

• Pool.redeem does not revert with an error message when maxRedeem is reached (as opposed to
Pool.withdraw).

• VaultFactory.createVault does not revert with error when beacon implementation is not set.

• WithdrawControllerFactory.createController does not revert with error when beacon
implementation is not set.

Code corrected:

All aforementioned problems have been resolved.

6.11 Pool Tokens Not Transferable
Correctness Low Version 1 Specification Changed

The _beforeTokenTransfer() function of Pool has been overwritten to disallow token transfers.

This is a mismatch with the specification, which states:
Pool Tokens are transferable, but to redeem the token back the new Pool Token holder will still need to comply with the pool’s lender access requirements.

Specification changed:

The documentation has been updated to clarify that Pool Tokens should not be transferable.

6.12 completeFullPayment Return Value
Correctness Low Version 1 Code Corrected

Loan.completeFullPayment returns payment even when a different amount has been paid.

Code corrected:

The return values for both completeFullPayment and completeNextPayment have been removed.

Circle stated that an event may be added in a future version to support easier off-chain accounting.

6.13 onlyPoolAdmin Modifier
Design Low Version 1 Code Corrected

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

In Loan, all Pool Admin functions are accessed through the PoolController, except reclaimFunds
and markCallback. For these, the onlyPoolAdmin modifier is used which allows the Pool Admin to
call the Loan contract directly. The interface is not consistent.

Code corrected:

The functions reclaimLoanFunds, claimLoanCollateral, cancelFundedLoan and
markLoanCallback have been refactored so that they can only be accessed through the
PoolController.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Events Could Be More Informative
Informational Version 1

This is a collection of events that could benefit from containing more information. The list contains
examples and is non-exhaustive:

• PoolController emits the PoolSettingsUpdated event. This event is emitted by 4 different
functions and contains no information about which values were changed or what the old and new
values are.

• PoolLib emits the FirstLossApplied event. It contains the loan address and
firstLossRequired. However, it does not contain the outStandingLoanDebt. This means the
event is not sufficient to know whether the firstLoss vault had sufficient funds to cover the
defaulted loan or if the loss was socialized among lenders.

• Some setters (e.g., ServiceConfiguration.setPaused) emit events even when the value of
the respective storage variable is not changed.

• Pool._performRedeemRequest emits an event with shares and assets. The amount of
assets, however, is non-conclusive at this point, since it can be higher if another loan repayment
occurs before the period ends.

7.2 Inconsistent Naming
Informational Version 1

Pool contains multiple functions that are called by PoolController. Their naming, however, does not
seem to follow a common scheme. For example, PoolController.defaultLoan calls
Pool.onDefaultedLoan, while PoolController.fundLoan calls Pool.fundLoan.

7.3 Missing Events
Informational Version 1

Some events are missing. We list some examples here. Note that this list may be incomplete:

• markCallback() is used to have on-chain evidence of the timestamp at which a callback of an
open loan was initiated. Currently this only sets a storage variable, but does not emit an event.

• ILoan defines the LifeCycleStateTransition event. It is only emitted in
Loan.markDefaulted. The event is missing in all other functions of Loan that change the
Lifecycle State. Note that IPool also defines an event with the same name, which may be
confusing.

• The PoolAccessControlFactory does not emit an event when a proxy is created, the other
factories do.

• The PoolSettingsUpdated event in PoolLib exists but is never emitted.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

7.4 Possible Gas Optimizations
Informational Version 1

The following code parts can be optimized for gas efficiency. The list is non-exhaustive:

• Redundant storage reads are performed in various places, for example:

• Loan.postFungibleCollateral (as well as many other functions in Loan) possess the
actual value of _state (because it has just been written) and still return the state by reading
from storage.

• Loan.fund loads the _state two times in a row from storage.

• Redundant storage writes are also performed in various place, for example:

• Loan.postFungibleCollateral writes to _state even though the contents of _state are
already known and might be identical to the new value.

• WithdrawController.performRequest sets the latestSnapshotPeriod of the user
state to the latestSnapshotPeriod of the global state although this has already been done
in the prior snapshotLender call.

• ToSAcceptanceRegistry._termsSet is set on an update to _termsOfService. A length
check of _termsOfService, however, is sufficient to determine whether the variable was set.

• External calls are more expensive than internal calls. Redundant external calls are performed in
various places, including:

• The RAY constant is read from PoolLib and LoanLib many times. Reading a constant from
an external library requires an extra delegatecall each time.

• Some Pool settings are only used in Pool (e.g., requestFee, requestCancellationFee)
but are stored in PoolController. Accessing these variables (and their respective
calculation functions) requires an external call every time.

• Pool.onActivated is called by the PoolController, then proceeds to call
PoolController.settings while the settings could have just been passed directly to the
function.

• Some limited functionality (3 lines of code) is extracted to external libraries, e.g.,
PoolLib.executeFirstLossWithdraw. This barely helps with deployment costs but
requires an additional external call.

• PoolController.withdrawFirstLoss calls Pool.firstLossVault, which in turn calls
PoolController.firstLossVault.

• Redundant calculations can be found in the following places:

• Pool._performRedeemRequest calls WithdrawController.maxRedeemRequest which
calculates _currentWithdrawState. Then, WithdrawController.performRequest is
called which calculates _currentWithdrawRequest again.

• WithdrawController.performRequest calculates _currentWithdrawState with a
state that has already been updated by the prior call to snapshotLender.

• WithdrawController.snapshot calculates the withdrawPeriod, then calls
_currentGlobalWithdrawState which calculates the withdrawPeriod again.

• The initializer of Loan sets the _state to Requested. Since Requested is item 0 in the enum, this
is already the default value and is unnecessary. The same is the case in
PoolController.initialize which sets the Pool state to Initialized even though it is the
default value.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

• Pool.onlyPoolController checks that poolController is not the 0-address and that it is
msg.sender. The first check is redundant.

• Some contracts (e.g., Pool) use transferFrom with the from address set to themselves. To
make this work, they also set an approval to themselves beforehand. A simple transfer would be
sufficient.

• In IPoolAccountings, the fields totalAssetsDeposited, totalAssetsWithdrawn,
totalDefaults and totalFirstLossApplied are written but never read. Off-chain accounting
can also be achieved with events.

• LoanLib.postFungibleCollateral inserts new collateral addresses into the collateral
state variable in non-constant time (as opposed to e.g., an EnumerableSet).

• PoolLib.calculateWithdrawStateForCancellation could return early in the first condition.

• PoolLib.calculateMaxCancellation uses Math.max on an unsigned integer and 0 and is
thus redundant.

• WithdrawController.simulateSnapshot could return early on eligibleshares == 0 or
endingSnapshot == offsetSnapshot.

Version 2In , the following gas optimization can be achieved:

• Each IPoolSnapshotState occupies 4 slots in storage. As redeemableRateRay is not larger
than RAY, fxRateRay is not larger than several multiples of RAY, sharesRedeemable is not used
anywhere in the code and any amount of periods can easily be captured in 40 bits, the whole struct
could be reduced to 1 word per snapshot:

• uint108 redeemableRateRay

• uint108 fxRateRay

• uint40 nextSnapshotPeriod

7.5 Shadowed Variable
Informational Version 1

Vault.initialize uses a parameter owner that shadows the owner function in
OwnableUpgradeable.

7.6 Snapshot Restricted to Admin in
PoolController
Informational Version 1

Pool.snapshot can be called by anyone. PoolController.snapshot calls Pool.snapshot but is
restricted to pool admin access. The function could be safely removed or given public access.

7.7 Spelling Errors
Informational Version 1

Some code comments inside the contracts contain spelling errors. Here are some examples:

• The parameter liquidityAsset in Pool.initialize is an asset held by the poo.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

• Pool.liquidityPoolAssets contains the following comment:
do not include any loan principles.

• LoanLib.payFees contains the following comment:
This include both the service fee and origiantion fees.

7.8 Unused Code
Informational Version 1

• PoolController.isInitializedOrActive and isActiveOrClosed are not used and do not
have value for external parties.

• ILoanLifeCycleState.Callback is never used.

• ServiceConfiguration.protocolFeeBps is set to 0 and never used.

7.9 Withdrawal Request Interface
Informational Version 1

The following functions have been added as an extension to the existing EIP-4626 interface:

• maxRedeemRequest

• maxWithdrawRequest

• maxRequestCancellation

• previewRedeemRequest

• previewWithdrawRequest

• requestRedeem

• requestWithdraw

• cancelRedeemRequest

• cancelWithdrawRequest

The functions should roughly mimic their counterparts from the EIP. However:

• The standard defines that withdraw and redeem burn exactly shares from a user.
requestWithdraw and requestRedeem make shares available for later withdrawal and burn
additional shares as a fee.

• Referencing the previous point, previewWithdrawRequest and previewRedeemRequest
subtract the fee from the input parameter. The rule MUST return as close to and no more than the
exact amount of assets that would be withdrawn in a redeem call in the same transaction is
therefore violated.

• The current interface of requestWithdraw and requestRedeem is now inconsistent with
cancelWithdrawRequest and cancelRedeemRequest, which handle the shares argument in
the same way as the standard.

• Version 2In , functions that rely on the current state of the user (maxRedeemRequest and
maxRequestCancellation) should return 0 if claimRequired is true for the given user address.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

7.10 Withdrawn Collateral Is Shown in View
Functions
Informational Version 1

When a borrower posts collateral, the collateral's address (and ID for NFTs) is added to a storage array.
When withdrawing collateral, it is not removed from storage. The storage can be read using the
fungibleCollateral() and nonFungibleCollateral() view functions.

For example, a borrower may have posted a certain ID of an NFT collection as collateral. After the
collateral has been withdrawn, calling nonFungibleCollateral() will still return the address and ID
of the NFT, even though the contract no longer owns it. This may be different from expected behavior.

7.11 Wrong Inline Comment
Informational Version 1

PoolLib.calculateWithdrawStateForCancellation contains a comment that reads
ensure the "latestRequestPeriod" is set to the current request period. This is,
however, never done in the function.

The function is always called in a context where the latestSnapshotPeriod is already updated.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Borrower Can Withdraw Additional Tokens
Note Version 1

Tokens sent to the collateralVault of a Loan in error by other users can be redeemed by the
borrower after the loan has matured.

8.2 Fees Can Be Changed During Runtime
Note Version 1

The PoolController allows a pool admin to change fees during the runtime of a pool:

• Request fees can be changed in Initialized state only.

• Request cancellation fees can be changed in Initialized state only.

• Service fees can be changed at any time.

• Fixed fees can be changed at any time.

Note that there is no maximum on how high fixed fees can be.

8.3 Instant Withdrawal After Deposit
Note Version 1

Instant withdrawal after deposit can lead to loss (on top of the withdrawal fee). Users that deposit after
the start of a period are subject to expected interest that has accrued but has not been paid yet. On
deposit, the resulting amount of shares for a given amount of assets is calculated taking this expected
interest into account. This means, an instant withdrawal after a deposit leads to a loss as assets to
shares are calculated without expected interest.

Furthermore, existing lenders experience an instant increase in value per share after another user
deposits with expected interest.

As soon as the expected interest is actually paid, all ratios normalize.

8.4 PoolController Approvals
Note Version 1

PoolController.depositFirstLoss calls transferFrom on the liquidity asset with a from
address supplied by the caller. If any user gives approvals to the contract, their funds can therefore be
transferred to the First Loss Vault by the Pool Admin.

Note that there is no reason for a user to give approval to the PoolController, it would only happen
accidentally.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

8.5 Proxy Deployment
Note Version 1

ServiceConfiguration and ToSAcceptanceRegistry should always be deployed using the
upgradeToAndCall mechanism of the used UUPS proxy to ensure that the initializer cannot be
frontrun.

8.6 Request Fee Paid in Shares
Note Version 1

Request fees and request cancellation fees are paid by burning users' shares. This means that the value
of the burned shares is distributed among all users of the platform. In the case where only one single
user is using a Pool, the fees are therefore non-existent.

8.7 Snapshot Every Period
Note Version 1

Withdrawal requests are processed at the beginning of each period. If a period is skipped due to inactivity
on the contracts, withdrawal requests will also not be processed in this period. Users that have open
withdrawal requests have to make sure that Pool.snapshot or any other function that triggers the
snapshot mechanism is called at least once per period. Otherwise, it may take longer until they can
withdraw their full amount.

8.8 ToSAcceptanceRegistry Not Versioned
Note Version 1

The ToSAcceptanceRegistry allows an operator to update its terms of service URL. This means it is
assumed that acceptances are automatically given to changes in the ToS at a later time.

8.9 withdrawPeriods After Close
Note Version 1

WithdrawController.withdrawPeriod calculates the current period the following way:

(currentTimestamp - activatedAt) / withdrawalWindowDuration;

The withdrawalWindowDuration possibly decreases after a Pool enters Closed state, resulting in
suddenly inflated period numbers.

Circle - Perimeter - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Contracts
	2.2.2 Snapshot algorithm
	2.2.3 Fees
	2.2.4 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 EIP-4626 Non-Compliance
	5.2 ToS Acceptance Registry Update

	6 Resolved Findings
	6.1 cancelFunded Counts Assets Twice
	6.2 Withdrawal DoS
	6.3 feeVault Stuck Funds
	6.4 Full Cancel Request Not Possible
	6.5 Late Fees Do Not Go to First Loss Vault
	6.6 Missing Permission Checks
	6.7 paymentDueDate Updated After Last Payment
	6.8 Callback State Not Used
	6.9 Inconsistent State After Withdrawal Cancellation
	6.10 Missing Sanity Checks
	6.11 Pool Tokens Not Transferable
	6.12 completeFullPayment Return Value
	6.13 onlyPoolAdmin Modifier

	7 Informational
	7.1 Events Could Be More Informative
	7.2 Inconsistent Naming
	7.3 Missing Events
	7.4 Possible Gas Optimizations
	7.5 Shadowed Variable
	7.6 Snapshot Restricted to Admin in PoolController
	7.7 Spelling Errors
	7.8 Unused Code
	7.9 Withdrawal Request Interface
	7.10 Withdrawn Collateral Is Shown in View Functions
	7.11 Wrong Inline Comment

	8 Notes
	8.1 Borrower Can Withdraw Additional Tokens
	8.2 Fees Can Be Changed During Runtime
	8.3 Instant Withdrawal After Deposit
	8.4 PoolController Approvals
	8.5 Proxy Deployment
	8.6 Request Fee Paid in Shares
	8.7 Snapshot Every Period
	8.8 ToSAcceptanceRegistry Not Versioned
	8.9 withdrawPeriods After Close

