
R-Pool and Settlement Markets for Recoverable ERC-20R Tokens
Kaili Wang
Circle Inc.

New York, NY, USA
kaili.wang@circle.com

Qinchen Wang
Stanford University
Stanford, CA, USA

qinchenw@cs.stanford.edu

Calvin Cai
Circle Inc.

New York, NY, USA
ccai@circle.com

Dan Boneh
Stanford University
Stanford, CA, USA

dabo@cs.stanford.edu

ABSTRACT
ERC-20R is a wrapper around ERC-20 that supports asset recovery
within a limited time window after an asset is transferred. It is
designed to reduce theft and losses on the blockchain by allowing
a victim to recover their stolen or lost assets during the recovery
window. When an honest recipient receives an ERC-20R asset, they
must wait until the recovery windows elapses (say, 24 hours), be-
fore they can unwrap the asset back to its base ERC-20 form. We
argue that many DeFi services will likely refuse to accept unsettled
recoverable assets because they can interfere with their normal
operations. Consequently, when Alice receives an ERC-20R token,
she must wait 24 hours before she can use it with a DeFi service.
But what if Alice is willing to pay a fee to exchange the wrapped
token for an unwrapped ERC-20 token that can be used right away?
In this paper we explore how to design a pool to exchange an unset-
tled ERC-20R asset for a base ERC-20 of the same asset. Designing
such a pool raises several challenging questions and we present our
solutions.

CCS CONCEPTS
• Applied computing → Secure online transactions.

KEYWORDS
Decentralized finance, asset recovery, ERC-20R
ACM Reference Format:
Kaili Wang, Qinchen Wang, Calvin Cai, and Dan Boneh. 2023. R-Pool and
Settlement Markets for Recoverable ERC-20R Tokens. In Proceedings of the
2023 Workshop on Decentralized Finance and Security (DeFi ’23), November
30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3605768.3623542

1 INTRODUCTION
Annual losses due to token theft and accidental losses are in the
billions: in 2021, $3.3 billion was stolen in crypto hacks, and that
number jumped to $3.8 billion in 2022 [1]. Funds lost or stolen are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DeFi ’23, November 30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0261-7/23/11. . . $15.00
https://doi.org/10.1145/3605768.3623542

often irrecoverable due to the irreversible nature of the blockchain.
One way to protect assets from theft is to strengthen the security of
asset keys and to improve the quality of Web3 code. A complemen-
tary approach, explored in depth by Wang, Wang, and Boneh [10],
is to extend the ERC-20 interface to support asset recovery.

We briefly review the ERC-20R architecture and refer to [10] for
a detailed description. Recoverable ERC-20, called ERC-20R, gives
the victim of a theft a short time window, say 24 hours, to initiate
an adjudicated recovery process. ERC-20R is a wrapper contract
around an existing ERC-20 contract — an ERC-20 token can be
wrapped to become an ERC-20R token, as explained in Section 2.
When a transaction transfers ERC-20R tokens from Alice’s account,
she has 24 hours to issue a freeze request to an arbitration contract,
along with evidence of the theft. If the request is approved, the
arbitration contract tracks Alice’s funds according to a prescribed
algorithm [10], starting from the initial theft recipient, and instructs
the ERC-20R contract to freeze the stolen assets in the tainted
accounts (alternatively, the ERC-20R developer can choose their
own algorithm). This begins a manual arbitration process (e.g., as
in [4]) that ends in one of two outcomes: either the freeze is lifted,
or the funds are returned to Alice. We give more details in Section 2.

An interesting consequence of ERC-20R is that Alice’s token
balance is split in two: settled tokens 𝑆 and unsettled tokens 𝑈 .
Her balance in the ERC-20R contract is the sum of 𝑆 and𝑈 . When
a transaction deposits funds into Alice’s account, the funds are
initially deposited into her unsettled balance𝑈 . During the freeze
window (say, 24 hours) these funds are subject to a freeze, and a
possible clawback. Once the freeze window elapses, the funds can
no longer be frozen, and they are transferred from Alice’s unsettled
balance 𝑈 to her settled balance 𝑆 . We stress that settled tokens
cannot be clawed back fromAlice by a recovery process. In addition,
Alice can unwrap a settled token from her balance 𝑆 back into a
base ERC-20 token, with no delay, as discussed in Section 2.

Since ERC-20Rwas introduced, several projects have built on it. A
few examples include the Novospace project, the Resolve project, as
well as some recovery UX proposals. In addition, a company called
Lossless.io has previously deployed a closely related architecture.

ERC-20R and DeFi. DeFi services, such as exchanges and lending
protocols, do no expect assets to be clawed back. For example,
suppose that a liquidity provider contributes unsettled tokens to
a Uniswap liquidity pool. It is possible that those tokens simply
disappear from the pool due to a recovery event. The Uniswap
contract, and most DeFi protocols, are not built to handle such
an event. Consequently, it is likely that DeFi protocols will refuse

49

https://doi.org/10.1145/3605768.3623542
https://doi.org/10.1145/3605768.3623542
https://doi.org/10.1145/3605768.3623542
https://novo-space.webflow.io/
https://resolv.finance
https://zora.co/collect/eth:0x5908eb01497b5d8e53c339ea0186050d487c8d0c/44
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605768.3623542&domain=pdf&date_stamp=2023-11-27

DeFi ’23, November 30, 2023, Copenhagen, Denmark Kaili Wang, Qinchen Wang, Calvin Cai, and Dan Boneh

to accept wrapped ERC-20R tokens, and only accept base ERC-20
tokens.

Nevertheless, when a DeFi service receives ERC-20 tokens, it
would be wise to immediately wrap the tokens in an ERC-20R wrap-
per. This protects the service’s token pool from bugs and hacks
that could drain the pool. In case of a hack, the service operator
could request a freeze and begin the recovery process. When the
DeFi service sends tokens from its pool to another account, it sends
them as wrapped ERC-20R tokens. If the transfer was caused by a
hack, it could get the tokens back through a recovery process. In
other words, DeFi services that use ERC-20R introduce an asymme-
try: they only accept base ERC-20 tokens, but send out wrapped
ERC-20R tokens.

Let us examine the implication of this asymmetry. When an
honest Bob receives a wrapped ERC-20R token, he cannot use it
right away because DeFi services refuse to accept wrapped tokens.
Bob cannot unwrap the token into a base ERC-20 token because the
token is currently unsettled. He can use the token to pay someone
else, but they would be unable to use it with a DeFi service. As
such, Bob’s only option is to wait 24 hours for the token to become
settled, unwrap it, and then use it with the desired DeFi service.

But what if Bob wants to use the unsettled token as soon as it is
received? He is even willing to pay a fee to unwrap his unsettled
token without delay. This raises the need for a special purpose pool
that we call an R-Pool:

An R-Pool is a pool used to exchange unsettled
ERC-20R tokens for base ERC-20 tokens.

The design of such a pool is the main topic of this paper.

Designing an R-pool. We explore two designs for the R-pool:
automated R-pool and order book R-pool.

The automated R-pool interface looks like a regular Uniswap
pool interface. The pool holds both settled and unsettled ERC-20R
tokens (it does not hold base ERC-20 tokens). A liquidity provider
(LP) can send unwrapped base tokens to the pool, which then get
wrapped into settled tokens, and receive LP tokens that record its
stake in the pool. Bob can use the R-pool to exchange his unsettled
tokens for base ERC-20 tokens using a (1 − 𝜖) exchange rate. The
pool will keep Bob’s unsettled tokens, unwrap some of its settled
tokens, and send back the resulting base ERC-20 tokens. At a later
time, the liquidity provider canwithdraw their tokens by converting
their LP tokens back to a mix of ERC-20R and base tokens.

The order book version is a simpler and more straightforward
design, where users can post orders to the contract and LPs evaluate
the risk of clawback themselves before matching an order.

Clearly, an LP who contributes to any R-pool is taking a risk: un-
settled tokensmight become frozen in the pool, or even clawed back,
and the LP will not be able to get their full deposit back. However,
LPs understand this risk and are compensated accordingly.

Designing an R-pool raises a number of difficult challenges:
• How do we prevent a thief from using the R-pool to launder
its stolen tokens?

• What should the unsettled to settled exchange rate be? The
rate will depend on the state of the pool, but also on the claw-
back risk associated with a specific transaction. Unsettled

ERC-20R tokens are not fungible — they have different risk
profiles — and this makes it harder to set the exchange rate.

• What happens when a liquidity provider withdraws their
tokens from the pool? Do they get settled or unsettled to-
kens? If the pool suffered a loss from a clawback, how much
should the LP get back?

In the next few sections we present answers to these questions.
An interesting aspect of the R-pool is that the ratio of settled to

unsettled tokens is constantly changing, even when no one is using
the pool. For example, 24 hours after Bob sends his unsettled tokens
to the pool, they automatically become settled and are moved from
the unsettled portion of the pool to the settled portion. If there is no
user activity for 24 hours, then the entire unsettled portion of the
pool goes to zero. As such, the constant product formula is not a
good fit for setting the exchange rate for an R-pool. Another reason
why the constant product formula is not a good fit for setting the
exchange rate is that it does a poor job of reflecting the level of
risk for clawback; each trade’s risk of clawback may depend on
the provenance of the unsettled tokens and the user’s transaction
history. Thus, a different mechanism is needed.

2 THE ERC-20R WRAPPER
We begin by giving some more details about the ERC-20R archi-
tecture. The architecture is fully implemented and the code will be
made available in an open source repository.

Every ERC-20R contract has two primary preset parameters:
• the address of the arbitration contract that can freeze and
recover tokens, and

• the time window during which a transferred token is recov-
erable (e.g. 24 hours).

ERC-20R works best as an ERC-20 wrapper, rather than a token
itself. First, it makes recoverability an optional feature to add to
existing assets.Wrapping can be thought of as “protecting” the asset.
Second, for a given base asset, different parties may need different
configurations. Some may want a longer or shorter settlement
period. Similarly, different parties may want different arbitrators for
the same asset. Third, wrapping provides a much easier deployment
path as there is no need to change the base asset.

Wrapping and unwrapping. When a base ERC-20 asset gets
wrapped with ERC-20R, a settled ERC-20R token is minted while
the base asset is locked in the ERC-20 contract. Going the other way,
anyone can unwrap a settled token with no delay, and this transfers
a base ERC-20 token to the caller. An unsettled token cannot be
unwrapped until it becomes settled.

Why is there no delay when unwrapping a settled ERC-20R to-
ken? Recall that settled tokens cannot be clawed back from their
owner. Hence, the only risk is that the current owner of the tokens
has been compromised, and the attacker is trying to evade recovery
by unwrapping the tokens while they are in the owner’s posses-
sion and then transferring the unwrapped tokens to the attacker’s
address. If the owner is a DeFi contract, then the attacker would
need to cause the contract to call the unwrap function, and this is
not always possible when a bug is being exploited or an oracle is
being manipulated. Moreover, since most DeFi contracts do not ever
need to unwrap tokens themselves (they transfer them to others in

50

R-Pool and Settlement Markets for Recoverable ERC-20R Tokens DeFi ’23, November 30, 2023, Copenhagen, Denmark

wrapped form), there is a disableUnwrap function that a contract
can call when it is first created to prevent any future unwraps. An-
other argument for immediate unwrap of settled tokens is the far
better user experience compared to a 24-hour delayed unwrap.

Transferring ERC20R tokens. When Alice sends tokens to Bob,
she can choose to send them from either her settled balance or
her unsettled balance. Either way the tokens are deposited into
Bob’s unsettled balance. Bob can choose to send the just-received
unsettled tokens to Carol, then Carol can send them to David, and so
on. If Alice initiates a recovery process within 24 hours of sending
the tokens to Bob, there is a discovery algorithm [10] that locates
the funds on chain (say, in David’s possession) and freezes them.

The ERC-20R interface. The interface for ERC-20R (IERC-20R)
has the same six functions as the IERC-20 interface, except that
many of these functions take an additional boolean flag as input
that indicates whether the action should be applied to the settled
or unsettled portion of the account’s balance. If no flag is specified
then it defaults to false (the settled portion). For example, here is
the interface for two functions:
function ba l anceOf (address account , bool i n c l u d eUn s e t t l e d)

external view returns (uint256) ;
function transfer (address to , uint256 amount , bool

i n c l u d eUn s e t t l e d) external returns (bool) ;

IERC-20R also supports the following additional functions:
function baseToken () external view returns (address) ;
function wrap (uint256 amount) external ;
function unwrap (uint256 amount) external ;
function unwrapTo (uint256 amount , address t o) external ;
function nonce (address account) external view returns (uint256) ;
function d i sab leUnwrap () external ;

The baseToken function returns the address of the base ERC-20 con-
tract. The unwrapTo function will remove tokens from the caller’s
settled ERC-20R balance and send the same number of base ERC-20
tokens to the specified address. The nonce function returns the
current nonce associated with an account, which increments by
one every time the account receives or sends ERC-20R funds. The
purpose of this nonce will be discussed in the next section. The dis-
ableUnwrap function causes all subsequent unwrap requests from
the caller’s account to fail. Once unwraps for an account are dis-
abled, it cannot be re-enabled. This is an optional security measure
for addresses (e.g. contracts) that only send out wrapped tokens
and do not need to unwrap their ERC-20R tokens themselves.

By definition, the ERC-20R interface also supports a freeze func-
tion and a recover function. We do not list them as part of the inter-
face because they are only callable by the arbitration contract and
are not needed for the discussion in this paper. The ERC-20R wrap-
per developer determines how these functions are implemented,
their parameters, and return values. Similarly, the arbitration pro-
cess used to decide whether a recovery request is justified is out of
scope for this paper. This topic is discussed elsewhere [4, 10].

3 DESIGNING AN R-POOL
We now turn to the design of an R-pool that can be used to exchange
an unsettled ERC-20R token for a settled or base version of the same
token. Such an exchange offloads the risk of a clawback to the pool’s
liquidity providers who are compensated for taking on that risk.

We explore two mechanisms for the design of such a pool. An
R-Pool can be implemented as an automated market where a decen-
tralized risk-rating oracle assesses the risk of every proposed trade
and provides an exchange rate on demand. Alternatively, the pool
can be implemented in the style of an order book giving liquidity
providers more control over the trades they are willing to accept.

In the automated market implementation, a risk-rating oracle
collects information from several risk-rating entities. The following
two mechanisms help to ensure an honest and accurate rating of
the risk:

• Every risk-rating entity must also be an LP in the pool which
gives it “skin in the game” and incentivizes it to report the
risk accurately. If it underestimates the clawback risk of the
offered tokens, then the risk-rating entity harms itself in the
event of a freeze or recovery. If it overestimates the clawback
risk, it might lose the trade opportunity altogether.

• The risk-rating entity estimates the risk of a swap based on
the following information: the requestor’s address and its
transaction history, the ERC-20R nonce of the requestor (as
explained below), and the amount to be swapped. It may also
employ other off-chain sources of information.

We next explore what swaps, recoveries, and other processes look
like under both implementations.

3.1 An automated market R-Pool
An automated market R-Pool works similarly to an AMM, where a
bonding curve contributes to determining the exchange rate. The
price of a base token with respect to its ERC-20R wrapper token
depends on two factors: the risk of clawback for each proposed
swap, and the current liquidity of the R-Pool. Each R-Pool instance
supports a particular range of risk (e.g. 0%-20% estimated risk of
clawback). A user requests for signatures from a list of risk rating
oracles qualified by the pool owner, sends them to the pool together
with the swap request. Each signature contains a risk rating and
address state of the user’s address. The pool will only fill an order
if its risk falls in the allowable risk range configured for the pool. A
liquidity provider will contribute to a pool if they are comfortable
with its risk profile.

Operation of the pool. The pool only holds settled and unsettled
ERC-20R tokens. When LPs add base ERC-20 tokens to the contract,
the tokens immediately get wrapped as settled ERC-20R tokens.
If Alice wishes to exchange her unsettled tokens for base tokens,
a number of settled tokens in the pool get unwrapped and then
transferred to Alice as base ERC-20 tokens. This results in a unique
characteristic that does not exist in other DeFi pools: liquidity of
the pool is self replenishing. The unsettled tokens that Alice sends
to the pool become settled after the recoverable window elapses
(say, 24 hours), thereby replenishing the pool of settled tokens that
can serve as liquidity for a future user of the pool.

Risk rating oracles. The risk of clawback depends on the transac-
tion history of the address requesting the exchange, and the amount
of tokens it is trying to swap. To evaluate the risk of a swap, an
off-chain aggregator service can collect risk ratings from multiple
risk rating entities, which collectively form a decentralized risk
rating oracle. Each risk-rating entity provides an exchange rate

51

DeFi ’23, November 30, 2023, Copenhagen, Denmark Kaili Wang, Qinchen Wang, Calvin Cai, and Dan Boneh

(e.g. between 0 and 1) for a given account requesting to exchange a
specified amount of tokens. For instance, if the entity believes there
is a 40% chance of clawback, they may prescribe an exchange rate
quote of 0.6. The pool sets the exchange rate to be the median of
the reported exchange rates. We note that some existing services,
such as Chainalysis, can serve as risk-rating entities.

Deterring a bad actor from using the pool. Suppose Marvin is a
bad actor who just stole some funds from a DeFi protocol, and the
funds are sitting in Marvin’s account as unsettled ERC-20R tokens.
If Marvin does nothing, then the theft will likely be clawed back
by a recovery process. Marvin, therefore, is incentivized to use the
R-pool to exchange his unsettled tokens for base ERC-20 tokens.
The recovery process will then harm the pool instead of Marvin.
However, when Marvin issues his exchange request to the pool,
the decentralized risk-rating oracle will recognize that the funds
recently transferred to Marvin are the result of a theft, and will
rate this as a high risk exchange, causing the pool to reject the
exchange.

Marvin, however, is a clever attacker and will instead adopt the
following strategy: shortly before executing his attack, Marvin asks
the risk-rating agencies to authorize an exchange from his account.
At this point, Marvin’s account is pristine, and the risk rating enti-
ties will send back a high rating for the exchange. After the high
ratings are received, Marvin performs the attack transferring the
stolen funds to his account. He now uses the previously obtained
high rating to exchange the unsettled tokens for settled ones using
the R-pool. This abuses the R-pool and causes the stolen funds to
be clawed back from the pool.

We prevent this attack on the R-pool using a newly introduced
nonce that is associated with every ERC-20R address (as already
mentioned in Section 2). The nonce is initialized to zero and is
incremented by one every time funds are transferred to or from
the associated ERC-20R address. Now, when a risk rating entity
issues a risk report, it signs the transaction details, the risk value,
and the current nonce of the requestor’s account. When the rating
report is submitted on chain, the R-pool approves the transaction
only if the rating is sufficiently high, and the nonce in the rating
report is equal to the current nonce in the on chain contract. This
effectively prevents any asset transfers from taking place to or from
the requestor’s account for the few seconds between the time that
the ratings were issued and the time that the exchange request is
posted on chain. If an asset transfer does take place, then the rating
report becomes invalid and the exchange request is rejected. This
mechanism ensures that the attacker cannot execute their attack
on a DeFi protocol after the rating report has been issued for the
attacker’s account.

While this nonce-based mechanism protects the R-pool, it has
one negative side effect: it prevents an honest Alice from using the
R-pool as part of a long atomic transaction, say involving a flash
loan. The reason is that the flash loan deposits funds into Alice’s
account, thereby invalidating any previously obtained risk report
for her account, and preventing Alice from using the R-pool to
exchange the flash loan tokens to base tokens. Indeed, we claim
that long atomic transactions involving flash loans enable a bad
actor to abuse the R-pool, and therefore actively prevent such swaps,
even by honest parties.

Liquidity incentivization and bonding curve. As the settled
tokens in the R-pool begin to run out, the price of base tokens
becomes higher via a multiplier function. This provides an incentive
to liquidity providers to deposit more base tokens because their
rewards will be higher. The exchange rate 𝑟 is thus computed, for
example, by the following function:

𝑟 (𝑠, 𝑣) = 𝑅 ·min
(
1,

𝑠

𝑣
· 1
^

)
(1)

where 𝑅 is the exchange rate from the risk-rating oracle, and the
remaining multiplier further reduces the exchange rate based on
the state of the pool. Here, 𝑠 is the number of settled ERC-20R
in the pool, 𝑣 is the total number of ERC-20R in the pool, and
^ ∈ (0, 1) is the threshold for the settled pool percentage at which
the multiplier function starts to decrease from 1. The parameter ^
is set upon pool initialization, and can be updated by governance. 𝑠
and 𝑣 are based on the current state of the pool. Another way to
describe this function is that it increases linearly with respect to
the settled ratio of the pool (𝑠𝑣) until the satisfactory ratio threshold
(̂) is reached. Other exchange rate functions can also work.

3.1.1 Deposit, withdrawals, and exchanges. We next discuss the
standard operation of an automated R-pool.

Deposit. In an automated R-Pool, liquidity providers (LPs) add base
tokens to the R-Pool contract, and the added tokens immediately
get wrapped as an ERC-20R upon entering the pool. In return, the
LP receives LP tokens as a receipt. Let𝐴 > 0 be the current number
of tokens locked in the pool (settled plus unsettled), and let 𝐴L𝑃 be
the current number of outstanding LP tokens. If the LP deposits 𝑑
base token, then 𝑡 LP tokens are minted and transferred to the
LP, where 𝑡 satisfies 𝑡/(𝐴L𝑃 + 𝑡) = 𝑑/(𝐴 + 𝑑). This ensures that
the LP’s fractional ownership of LP tokens (the left hand side) is
equal to its fractional ownership of the current pool (the right hand
side). By using the current pool size we ensure that new LPs are
not penalized for clawbacks that took place before they joined the
pool. The equation for 𝑡 simplifies to 𝑡 := 𝑑 · (𝐴L𝑃/𝐴), which is well
defined when 𝐴 > 0.

Withdrawal. A liquidity provider can burn its LP tokens to with-
draw its share of the liquidity pool. If the LP burns 𝑡 LP tokens then
it gets back𝑤 := 𝑡 · (𝐴/𝐴L𝑃) tokens from the pool. The LP receives
a combination of settled and unsettled tokens that sum to𝑤 , so that
the current settled-to-unsettled ratio in the pool is unchanged by
the withdrawal. We keep the settled-to-unsettled ratio of the pool
constant during withdrawal to prevent an LP from manipulating
the bonding curve in Eq. (1).

Swap.AnERC-20R holderwill send a swap request with the amount
(𝑃) of unsettled tokens it intends to swap to the aggregator. Then,
the aggregator will gather a quorum of 𝑛 risk reports and signatures
from risk rating entities (the pool enforces a minimum of 𝑛 ratings,
where 𝑛 is a parameter that determines the overall risk level of the
pool). Each risk-rating entity will provide a digital signature over
the following tuple: address of the requestor, amount to exchange,
ERC-20R nonce of the account, report expiration time, and their
exchange rate quote. The ERC-20R holder then initiates a swap
request to the automated R-Pool with the signatures and quotes.
The R-Pool will check that:

52

R-Pool and Settlement Markets for Recoverable ERC-20R Tokens DeFi ’23, November 30, 2023, Copenhagen, Denmark

• the number of risk reports is above the required minimum;
• the signer of each risk report is unique;
• each risk reporting entity is an LP with a minimum deposit;
• each risk reporting entity is authorized1;
• the ERC-20R nonce of the requestor’s address has not changed;
• none of the quotes have expired; and
• the median quote is within the risk bounds of the pool.

It thenmultiplies themedian quote with the fee percentage based on
the bonding curve in (1) to calculate the price of the base token. The
R-Pool then unwraps a corresponding amount (𝑥) of settled ERC-
20R tokens in the pool for base tokens, and sends 𝑥 base tokens to
the user while receiving 𝑃 unsettled tokens. The pool size increases
by 𝑃 − 𝑥 unsettled tokens.

Asset recovery. The risk of claw back of unsettled tokens in the
pool is shared amongst the current liquidity providers, and oc-
casionally, also by LPs who have only recently withdrawn from
the pool. We demonstrate this using three illustrative examples.
Consider a pool that currently holds 100 settled tokens and 100
unsettled tokens. A bad actor swaps out 50 settled tokens with 100
unsettled tokens, leaving the pool with 50 settled tokens and 200
unsettled tokens. Later, the contributed 100 unsettled tokens are
frozen and clawed back through a recovery process. Which parties
incur losses as a result? Consider the following three scenarios:
• After the recovery process, the pool is left with 50 settled tokens
and 100 unsettled tokens. Now, a liquidity provider 𝐿0 who
owns 10% of the pool withdraws all of their funds from the pool.
Since the pool only has 100 unsettled and 50 settled ERC-20R
tokens, the LP will receive 10 unsettled ERC-20R tokens and
5 base tokens (10% of the unsettled and settled pool balance
respectively), missing out on the 10 additional ERC-20R tokens
it could have withdrawn if the pool had rejected the tainted
swap. Hence, 𝐿0 incurs some losses.

• A liquidity provider 𝐿1 who owns 50% of the pool withdraws
all of their funds from the pool prior to the recovery process,
receiving 100 unsettled ERC-20R tokens and 25 base tokens.
Later, when the 100 stolen ERC-20R tokens are frozen and
recovered, 𝐿1 does not incur any losses because the pool has
just enough ERC-20R balance to cover the 100 tokens being
clawed back. 𝐿1 suffers no losses, and the LPs who have not
withdrawn from the pool share the loss.

• A liquidity provider 𝐿2 who owns 60% of the pool withdraws all
of its funds from the pool prior to the recovery process, receiv-
ing 120 unsettled ERC-20R tokens and 30 base tokens. Later,
the 100 stolen ERC-20R tokens are then frozen and recovered.
Since the pool only has 80 unsettled ERC-20R tokens left at the
time of recovery, 𝐿2 will be held accountable for the 20 tokens
remaining, which means that 𝐿2 still shares some of the losses
despite having withdrawn from the pool before the recovery.

3.2 Order book R-Pool
A very different architecture for an R-pool is an order book. This
design enables holders of base tokens to choose their own risk
profile and price curves, rather than relying on a preset risk-rating
oracle. This mechanism is less gas efficient (assuming matching

1The decision to allow or disallow an entity could fall on a DAO for the R-Pool.

is done on-chain [6]), but it offers more flexibility and control for
knowledgable liquidity providers. A holder of unsettled ERC-20R
tokens may post an “order” (a minimum exchange rate they are
willing to accept) to the R-Pool contract. Then, an LP will estimate
the risk of clawback associated with this order (based on the token
provenance and the requestor’s transaction history) and, if they
are willing to accept, calls the order book R-pool contract to fill the
order. This triggers a swap of unsettled for base tokens.

Unlike the automated R-Pool, there is no deposit or withdrawal
action needed in the pool from LPs, because each order-book trade
will pull the base tokens directly from the LP’s account when the
swap is filled. Hence, LPs do not need to lock their tokens before
an order is filled. In addition, there is no pooled risk: an LP that
fills an order assumes the entire clawback risk from the received
unsettled tokens.
We next briefly describe the operation of the order book.

User initiates an order. First, the user will post an initial bid by
calling postBid and providing their address, amount of unsettled
tokens to swap, their minimum asking price, and expiration times-
tamp of their bid. This information will be stored in the contract.
The user is able to cancel their bid at any point, as long as it has
not yet been filled.

Order-matching and Swap. Any party that holds base tokens
can listen to posted orders and analyze the bids and the associated
risk to determine whether they are willing to fill the order. If so,
then they can call matchBid, specifying the order they would like
to match, and their final offered quote of base tokens to sell to the
user. The contract will check that the user’s ERC-20R nonce has not
changed, that the bid is has not expired, and that the offered quote
is indeed at least the minimum asking price. Then, the contract will
move unsettled tokens from the user to the liquidity provider, and
move base tokens from the liquidity provider to the user. Finally, it
will delete the order from the contract.

Recovery. In an order book R-Pool, the risk of claw back is assumed
entirely by the liquidity provider who authorized a swap under its
risk rating mechanism. For example, if a thief requests a swap of
100 ERC-20R tokens and a liquidity provider approves such a swap
with a 50% fee, the liquidity provider loses a net of 50 base tokens
if the 100 ERC-20R tokens are frozen and recovered. Each LP can
employ their own risk-rating strategy without affecting other LPs.

4 EXTENSIONS

No R-pool for non-fungible tokens (NFTs). The "recoverable
wrapper" concept applies equally well to ERC-721 assets, where an
ERC-721Rwrapper protects the wrapped asset by allowing recovery
in case of theft [10]. As in ERC-20R, when an asset is transferred
to a new owner it remains in an unsettled state in the recipient’s
account during the recovery window (say, 24 hours), and becomes
settled once the window elapses. An NFT Marketplace might refuse
to accept an unsettled asset, and therefore the new owner has to
wait until the asset becomes settled or it can be unwrapped. But
what if the new owner of the NFT wishes to trade it right away?

This raises the question of an R-pool for NFTs. Unfortunately, we
point out that an R-Pool for NFTs cannot exist because of their non-
fungibility: it is not possible to exchange an ERC-721R wrapped

53

DeFi ’23, November 30, 2023, Copenhagen, Denmark Kaili Wang, Qinchen Wang, Calvin Cai, and Dan Boneh

asset for the same version of the asset in a non-wrapped form
because there is only one version of the asset at any given time.
Instead, we may see the emergence of marketplaces willing to trade
in non-settled assets for a discount, which exists because the buyer
is assuming the risk of recovery until the recovery window elapses.

More applications for an R-pool. So far we focused on end
users who may want to use the R-pool to avoid delays in using a
wrapped token. Some DeFi protocols may need to do the same and
can use the R-pool in the same way. In addition, one can imagine
new financial products motivated by R-pools. Some risk-seeking
liquidity providers may seek high-risk R-pools due to their higher
APR. Others may offer a CDO-like product that invests in multiple
R-pools at different risk levels.

Recoverability at alternative layers. Recoverability can be im-
plemented at different layers of the blockchain stack:

• At the smart contract layer: An ERC-20 smart contract
can be adapted to support recoverability, as we do in the
ERC-20R wrapper.

• At the consensus layer: Recoverability can be implemented
at the consensus layer, where a recovery process causes all
validators to mark a bad transaction as canceled. The Pilot
project, discussed in Related Work (Section 5), is an example
of one such implementation.

• At the account layer: Recoverability can be implemented
as an account abstraction policy, where every transfer out
of a protected account incurs a 24-hour delay.

5 RELATEDWORK
Architectures for recoverable assets have been explored in a number
of prior works. Eigenmann [3] drafted a contract for a reversible
token that extends the ERC-20 standard. It uses an escrow method,
where the escrow period is 30 days, during which the sender could
recall the money at any time, with no oversight. This is problematic
because Bob could pay Alice for a service, and then reverse the
payment 28 days later, after Alice completed the service.

The Reversecoin project [2] from 2015 launched as a layer 1
blockchain. It introduced a timeout period between transaction
initiation and confirmation. Each account has an offline key pair that
enables the owner to either reverse a transaction or immediately
confirm it. This may not prevent some modern hacks: the attacker
would either steal the confirmation key, or trick the user into using
the confirmation key to confirm amalicious transaction. The elegant
Bitcoin Convenants proposal [8] similarly uses two keys (or more)
to enable a vault owner to finalize or revert transactions from the
vault 24 hours after they were posted.

More recently, Lossless.io [5], provides an ERC-20 token wrapper,
but with a number of differences from ERC-20R. Anyone with
staked LSS tokens can monitor on-chain events for hacks, and can
freeze an address if the address is involved in a hack. Only a single
address can be frozen for a given hack, so one must act quickly
after a hack to freeze the attacker’s address before the funds are
further dispersed. The quickest spotter is rewarded in a winner-
takes-all fashion. The company then decides unilaterally whether
the reversal is warranted, and if so reverses the transfer.

Finally, Pilot [9] is an optimistic L2 built from a modified OP-
stack. The Rollup coordinator in this L2 has the ability to remove

transactions from the L2 chain using a mechanism similar to how
a block is removed when a valid fraud proof is submitted. This
enables the coordinator to undo losses caused by hacks.

The question of swapping settled for unsettled funds comes up in
a number of settings. For example, funds received via an optimistic
Rollup are subject to a seven day dispute period, and can be viewed
as unsettled funds. Recently, Moosavi et al. [7] explored the question
of swapping such funds for settled funds, which can be viewed as a
type of R-Pool. However, in the case of an optimistic Rollup, one
can be assured that no dispute will be submitted by verifying for
themselves that all the transactions in a Rollup block are valid. In
the case of unsettled ERC-20R tokens, there is no way to tell for
sure if the tokens will be disputed during the freeze window.

6 CONCLUSIONS AND FUTUREWORK
In this work we discussed the challenges in building an R-pool that
can be used to exchange unsettled ERC-20R tokens for base ERC-20
tokens. Such a pool is needed for compatibility with the rest of
the DeFi ecosystem. The key challenge in designing an R-pool is
ensuring that a bad actor cannot use the pool to shift the recovery
risk to the pool’s liquidity providers. We explored two possible
designs for an R-Pool: an automated market and an order book.
The former relies on a decentralized risk-rating oracle to determine
exchange rates. It pools the risk of a clawback among the current
liquidity providers. The latter employs an order book that gives
more flexibility to liquidity providers, but also fully relegates the
risk assessment to them. Either version essentially acts as a form
of decentralized insurance.

The ERC-20R architecture, as a wrapper around ERC-20 that
enables asset recovery, raises many fascinating challenges in the
Web3 space. This paper explores one aspect of this question, but
many other research questions remain. In the future, it would be
interesting to explore and compare recoverability solutions at differ-
ent layers of the blockchain stack: at the smart contract layer, at the
consensus layer, and at the account layer, as discussed in Section 4.
Another open problem is to develop mechanisms for asset recovery
in a cross-chain transfer or even in a cross-rollup transfer.

Acknowledgments. This work was partially funded by the Simons
Foundation and NTT Research.

REFERENCES
[1] Chainalysis. The 2023 crypto crime report. link, 2023.
[2] Obulapathi Challa. Reversecoin: Worlds first cryptocurrency with reversible

transactions. link, 2014.
[3] Dean Eigenmann. Reversible token. link, 2018.
[4] Clément Lesaege. ERC 792: Arbitration standard. link, 2017.
[5] Lossless. Lossless whitepaper. link, 2020.
[6] Mahsa Moosavi and Jeremy Clark. Lissy: Experimenting with on-chain order

books. In Financial Cryptography (FC), volume 13412 of Lecture Notes in Computer
Science, pages 598–614. Springer, 2022. link.

[7] Mahsa Moosavi, Mehdi Salehi, Daniel Goldman, and Jeremy Clark. Fast and
furious withdrawals from optimistic rollups. InAdvances in Financial Technologies
(AFT). LIPIcs, 2023.

[8] Malte Möser, Ittay Eyal, and Emin Gün Sirer. Bitcoin covenants. In Financial
Cryptography, volume 9604 of Lecture Notes in Computer Science, pages 126–141.
Springer, 2016. link.

[9] Pilot. Pilot whitepaper. link, 2023.
[10] Kaili Wang, Qinchen Wang, and Dan Boneh. ERC-20R and ERC-721R: Reversible

transactions on ethereum. arXiv 2208.00543, 2022. link.

54

https://lossless.io/
https://pilothq.io/
https://go.chainalysis.com/2023-crypto-crime-report.html
https://docs.google.com/document/d/1hMCkEQUYm9oFCQpxtIWFqVpt66pTQn1zCDW8WX0b7hw/edit
https://github.com/MediciDAO/ReversibleToken/blob/master/contracts/ReversibleToken.sol
https://github.com/ethereum/EIPs/issues/792
https://lossless-cash.gitbook.io/lossless/
https://arxiv.org/abs/2101.06291
https://fc16.ifca.ai/bitcoin/papers/MES16.pdf
https://hackmd.io/@pilot/ByU_uZtZn
https://arxiv.org/abs/2208.00543

	Abstract
	1 Introduction
	2 The ERC-20R Wrapper
	3 Designing an R-Pool
	3.1 An automated market R-Pool
	3.2 Order book R-Pool

	4 Extensions
	5 Related Work
	6 Conclusions and future work
	References

