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01Abstract

We show how to modify the CGG+21 threshold signature scheme 
to identify misbehaving signers in-real time. We move the zero-
knowledge proofs of correct behavior from the end of the protocol 
(the traitor-tracing phase) and into the main body of the protocol. The 
total number of rounds stays the same. Online protocols can proceed 
in four rounds of communication. Offline protocols require 3 rounds 
of pre-computation (which can be done in bulk before the message 
is known) and one round to sign the message. Our protocol requires 
every message to be broadcast to all participants (echo broadcast is 
acceptable). In scenarios of 3-of-n signers, the entire message transcript 
is 141.3 KB. Misbehavior detection may be outsourced to a central 
authority that verifies the public transcript.  

Identifying misbehaving participants in a multi-party 
computation is better done sooner than later.
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02Introduction

Threshold signatures allow multiple parties to split the signing key corresponding to a single 
address. Even in situations where multiple signatures are directly supported, a threshold signature 
scheme offers more privacy to the address owners because it reveals no information about the 
key holders. Since threshold signatures are inherently multi-step off-chain protocols, we need a 
way to hold any cheating signers accountable. This paper modifies the CGG+21 ECDSA threshold 
signature scheme to identify cheating signers right away instead of after-the-fact.

CGG+21 optimizes the length of messages during signing. If something goes wrong, the 
participants initiate a traitor-tracing algorithm. They broadcast zero-knowledge proofs that 
their prior broadcasts were correctly formed.  We move these proofs into the main body of the 
protocol. Participants prove that their message is correctly formed during the round itself.  The 
result is a slower and more expensive protocol, but one that is sufficiently efficient for infrequent 
transactions and cold storage. The benefit is that misbehaving users are identified immediately.

High stakes transactions often require multiple 
parties to cosign. While many newer blockchains 
offer native multi-signature support, this is not 
the case for some older and more established 
blockchains such as Ethereum.

3 of 6 Signature

Address
0x95222290DD7278Aa3Dd 
d389Cc1E1d165CC4BAfe5

0xa41ad7df2cc79f37467d8a21ebfd1f9e 
81ade3c45278bca02a8eefc69a2e2d94
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A (t,n)-threshold signature scheme lets any t + 1 ≤ n participants sign messages. It supports 
several protocols:

1. Key Generation. The n participants work together to jointly create a public key. This public 
key looks like an ordinary public key to a signature scheme. Each participant gets as output a 
share of the secret signing key. 

2. Key Refresh. A subset of t + 1 participants work together to generate new shares of the 
public key. They may choose to exclude existing members and/or add new members to the 
group of signers.

3. Signing. A subset of  t + 1 participants work together to generate a signature on a message. 
The participants do not learn any information about each other’s share of the secret.

4. Verification. This is the standard signature verification function used in an ordinary signature 
scheme.

The multi-party key generation, key refresh, and message signing protocols can fail if one of the 
parties misbehaves. The participants may be forced to abort early or end with invalid output. 
Identification mechanisms allow participants to determine which participant(s) misbehaved. 
Robust protocols require participants to prove that their output is correct at every step, while 
optimistic protocols reduce message length in each round by performing traitor-tracing only if 
something goes wrong. 

Proactive protocols are especially important for offline scenarios such as cold storage. The risks 
involved are much higher as the amounts of funds at stake can be in the billions of dollars. The 
signers are often highly trusted individuals who have access to other sensitive resources in their 
organizations. At the same time, signing takes place in remote locations on offlined computers. 
Every round of communication requires humans to physically transfer messages.  There is very 
little visibility as to what the offline computer is actually doing. Thus, while the risks are higher, 
the ability to detect misbehavior is much lower. Also, in terms of efficiency, the time to generate 
a signature depends more on the number of rounds of communication than the time/space used 
for individual messages. For all these reasons, a low-round robust signature scheme makes more 
sense than a low-bandwidth signature scheme with a large number of rounds or a reactive traitor 
tracing protocol. 

GG18 is one of the most widely used ECDSA threshold signature schemes due to its widespread 
implementation in open source libraries, including by Binance, 0x EigenLabs, and ZenGo.  
However, developers are moving to the updated CGG+21 protocol (sometimes referred to as 
CG20, CG21, and CMP) due to a series of vulnerabilities found in GG18.  Apache Milagro-MPC 
library and SafeHeron Multi-Party ECDSA libraries implement CGG+21. See Bibliography for list 
of open-source implementations.

Both GG18 and CGG+21 abort if something goes wrong. CGG+21 also has the option of trying to 
identify which participant misbehaved by asking participants to publish zero-knowledge proofs 
that their prior messages were correctly formed. This step is called the traitor-tracing round. 
It happens after the protocol completes. The authors state that it is possible to publish these 
zero-knowledge proofs during the protocol, but decline to do so due to the bandwidth cost. We 
believe that the cost is not prohibitive for many applications. This document shows developers 
how to make the necessary modifications.
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Efficiency
The robust protocols are sufficiently efficient for situations where maximizing throughput is not the 
goal. Using 2048-bit Paillier modulus and a 256-bit ECDSA group, the message size for each of the t + 1 
participants is:

 t2  •  (20m + 10k)  +  t  •  (36m + 14k)  +  28m  +  4k

Using standard parameters of a 2048-bit Paillier modulus and 256-bit elliptic curves results in a message size 
of 5.3  •  t2  +  9.4  •  t  +  7.1 KB. The table below shows transcript sizes for some common policies.

Communication Rounds
The CGG+21 paper states that its protocol consists of 3 rounds of pre-signing and one round of signing. In 
case of an online protocol, the entire process completes in 4 rounds. However, the analysis does not quite 
apply to a cold storage scenario.

Pre-Signing

• Round 1: all participants broadcast their output.
• Round 2: all participants process output from round 1 and broadcast new output.
• Round 3: all participants process output from round 2 and broadcast new output.
• Output: all participants process output from round 3 and output that everything is ok.

Signing

• Round 5: all participants get the message string and broadcast new output.
• Output: all participants process output from round 1 and compute the signature. Technically, any 3rd 

party that sees the output of round 1 could compute the signature, but only the actual participants can 
determine who misbehaved.

The CGG+21 authors do not count the final output rounds, thus getting three rounds of pre-signing and one 
round for signing. In some applications such as cold storage, the output rounds would require an extra visit to 
the cold storage facility.

Signers Individual Transcript Size Total Transcript Size

2 signers (t = 1) 21.8 KB 43.6 KB

3 signers 47.1 KB 141.3 KB

4 signers 83.0 KB 332.0 KB

5 signers 129.5 KB 647.5 KB

6 signers 186.6 KB 1.1 MB

7 signers 254.3 MB 1.8 MB
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Online Signing. The blue, red, and green participants perform 3 rounds of pre-signing. Then the orange user 
broadcasts a message to sign. The blue, red, and green participants combine the pre-signing output round 
with round 5 to broadcast some output.

Cold Storage Signing. The blue, red, and green participants perform 4 rounds of pre-signing, because 
the output round also requires a trip to the cold storage facility to deliver  3   3   3  and compute the 
acknowledgement   ✓   ✓   ✓  which remains in cold storage. Later, the orange participant sends the 
message to cold storage for round 5. The orange participant is able to assemble the output of round 5 into a 
signature. A follow-up trip to cold storage is needed only if something goes wrong.

Alternative Cold Storage Signing. The pre-signing 
protocol can pause after round 3.  The round 3 output 
can be delivered to signers with the message. Then 
the pre-signing output round and round 5 can be 
combined into one round. A follow-up trip to cold 
storage is needed only if something goes wrong.

Online Signing

Alternate Cold Storage Signing

Cold Storage Signing
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The table below compares this work to GG18, the robust version of GG20, and the most round-efficient 
optimistic CGG+21 protocol, for a (t,n)-threshold signature. We split the rounds of signing into two categories: 
the pre-signing stage is a series of precomputation that can proceed without knowing the message, while the 
signing stage requires the message. For consistency, we use the same analysis of 3 rounds pre-signing and 1 
round signing for our work as that is how the authors of GG18, GG20, and CGG+21 counted rounds.

Implementation
We built an open-source Golang implementation of robust CGG+21. We added it as a new module for the 
popular Binance tss-lib, which implements GG18. The two threshold signature algorithms are compatible. 
Existing deployments can continue to use the same keys that they generated for GG18 to sign with our 
CGG+21 code. They can also take advantage of the existing tss-lib key refresh and key derivation algorithms.

GG18 GG20 CGG+21 This work

Rounds pre-signing 4 6 3 3

Rounds signing 5 1 1 1

Traitor tracing None After After During

Rounds for traitor tracing n/a O(1) O(t2) 0

Message length Low Low Low High
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This document only covers message signing. The GG18/CGG+21 key generation protocols and 
the Binance tss-lib key refresh protocols are compatible with our signing implementation. Their 
key generation and key refresh protocols already have zero-knowledge proofs of correctness 
at every step. All of the zero-knowledge proofs are in the CGG+21 paper. The one exception is 
∏aff-g-inv, which we include here.

Basic functions
We review ECDSA and Paillier homomorphic encryption. This is meant to be a brief overview 
to make the rest of the document easier to understand; developers should refer to the actual 
ECDSA standard and the Paillier article when implementing these protocols.

ECDSA signature [FIPS 186-4]. The ECDSA signature has public parameters (G,g,q), where 
G is an elliptic curve and g is a point on the elliptic curve that generates a subgroup of prime 
order q.

Paillier homomorphic encryption [Paillier99]. This encryption scheme allows us to add and 
multiply ciphertexts, thus allowing more efficient multi-party protocols and zero-knowledge 
proofs over arithmetic expressions. We briefly describe the encryption scheme, while omitting 
some implementation details that have no bearing on our protocols.

8

Rounds for
traitor tracing

n/a O(1) O(t2) 0

Message length Low Low Low High

Implementation
We add an implementation of robust CGG+21 to the Binance tss-lib implementation of GG18.
The two algorithms are compatible. Signers can continue to use the same keys they generated
for GG18 to sign with our CGG+21 code. They can take advantage of the key refresh and key
derivation algorithms.

Robust CGG+21
This section goes through the CGG+21 threshold signature protocol and explains how to modify
it to ensure robustness at every step. This document only covers message signing. The
GG18/CGG+21 key generation protocols and the Binance tss-lib key refresh protocols are
compatible with our signing implementation. Their key generation and key refresh protocols
already have zero-knowledge proofs of correctness at every step. All of the zero-knowledge

proofs are in the CGG+21 paper. The one exception is , which we include here.Π𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔−𝑖𝑖𝑛𝑛𝑣𝑣

Basic Functions
We review ECDSA and Paillier homomorphic encryption. This is meant to be a brief overview to
make the rest of the document easier to understand; developers should refer to the actual
ECDSA standard and the Paillier article when implementing these protocols.

ECDSA signature [FIPS 186-4]. The ECDSA signature has public parameters , where(𝐺𝐺, 𝑔𝑔, 𝑞𝑞)
is an elliptic curve and is a point on the elliptic curve that generates a subgroup of prime𝐺𝐺 𝑔𝑔

order .𝑞𝑞

1. outputs a secret key and a public key .(𝑥𝑥, 𝑦𝑦) ← 𝐾𝐾𝑒𝑒𝑦𝑦𝐺𝐺𝑒𝑒𝑛𝑛(𝐺𝐺, 𝑔𝑔, 𝑞𝑞) 𝑥𝑥 ← 𝑍𝑍
𝑞𝑞

𝑦𝑦 = 𝑔𝑔𝑥𝑥

2. outputs a signature . Briefly, the signer chooses ,(𝑟𝑟, 𝑠𝑠) ← 𝑆𝑆𝑖𝑖𝑔𝑔𝑛𝑛(𝐺𝐺, 𝑔𝑔, 𝑞𝑞, 𝑥𝑥, 𝑚𝑚𝑠𝑠𝑔𝑔) (𝑟𝑟, 𝑠𝑠) 𝑘𝑘 ← 𝑍𝑍
𝑞𝑞

and computes and for a specific ECDSA hash function . Then the𝑅𝑅 = 𝑔𝑔𝑘𝑘 𝑟𝑟 = 𝐻𝐻'(𝑅𝑅) 𝐻𝐻'

signer computes .𝑠𝑠 = 𝑘𝑘−1(𝑚𝑚𝑠𝑠𝑔𝑔 + 𝑟𝑟𝑥𝑥) 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞
3. outputs true if is a valid signature on .𝑡𝑡𝑟𝑟𝑢𝑢𝑒𝑒 | 𝑓𝑓𝑎𝑎𝑙𝑙𝑠𝑠𝑒𝑒 ← 𝑉𝑉𝑒𝑒𝑟𝑟𝑖𝑖𝑓𝑓𝑦𝑦(𝐺𝐺, 𝑔𝑔, 𝑞𝑞, 𝑦𝑦, 𝑚𝑚𝑠𝑠𝑔𝑔, 𝑟𝑟, 𝑠𝑠) (𝑟𝑟, 𝑠𝑠) 𝑚𝑚𝑠𝑠𝑔𝑔

The verifier computes and checks if .𝑅𝑅 = 𝑔𝑔𝑚𝑚𝑠𝑠𝑔𝑔·𝑠𝑠−1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞 · 𝑦𝑦𝑟𝑟·𝑠𝑠−1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞 𝑟𝑟 = 𝐻𝐻'(𝑅𝑅)

Paillier homomorphic encryption [Paillier99]. This encryption scheme allows us to add and
multiply ciphertexts, thus allowing more efficient multi-party protocols and zero-knowledge9

proofs over arithmetic expressions. We briefly describe the encryption scheme, while omitting
some implementation details that have no bearing on our protocols.

1. chooses two -bit primes . The private key is a pair of(𝑝𝑝𝑘𝑘,  𝑠𝑠𝑘𝑘) ← 𝐾𝐾𝑒𝑒𝑦𝑦𝐺𝐺𝑒𝑒𝑛𝑛(1𝑘𝑘) 𝑘𝑘 (𝑝𝑝, 𝑞𝑞)
values that are deterministically precomputed from . The public key is an RSA(λ, ν) (𝑝𝑝, 𝑞𝑞)
modulus .𝑁𝑁 = 𝑝𝑝𝑞𝑞

2. chooses a random and outputs𝑐𝑐𝑡𝑡𝑒𝑒𝑥𝑥𝑡𝑡 ← 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑝𝑝𝑘𝑘, 𝑚𝑚𝑠𝑠𝑔𝑔) ρ ∈ 𝑍𝑍
𝑁𝑁

.𝑐𝑐𝑡𝑡𝑒𝑒𝑥𝑥𝑡𝑡 = (1 + 𝑁𝑁)𝑚𝑚𝑠𝑠𝑔𝑔 · ρ𝑁𝑁 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁2

3. . Computes the message and randomness used to(𝑚𝑚𝑠𝑠𝑔𝑔, ρ) ← 𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝑐𝑐𝑡𝑡𝑒𝑒𝑥𝑥𝑡𝑡) ρ
encrypt it. The full decryption algorithm is in Section 5 of Paillier99.

4. computes to get a ciphertext such that that𝑠𝑠𝑢𝑢𝑚𝑚 ← 𝐴𝐴 ⊕ 𝐵𝐵 𝑠𝑠𝑢𝑢𝑚𝑚 = 𝐴𝐴 · 𝐵𝐵  𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁2

.𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝑠𝑠𝑢𝑢𝑚𝑚) = 𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝐴𝐴) + 𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝐵𝐵)

5. computes to get a ciphertext such that that𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑𝑢𝑢𝑐𝑐𝑡𝑡 ← 𝐴𝐴 ⊗ 𝑏𝑏 𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑𝑢𝑢𝑐𝑐𝑡𝑡 = 𝐴𝐴𝑏𝑏 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁2

.𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑𝑢𝑢𝑐𝑐𝑡𝑡) = 𝑏𝑏 · 𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝐴𝐴)

For convenience, we use the notation to mean adding two ciphertexts and to𝐴𝐴 ⊕ 𝐵𝐵 𝐴𝐴 ⊗ 𝑏𝑏
mean multiplying ciphertext by a scalar value . The operations and can be done𝐴𝐴 𝑏𝑏 ⊕ ⊗
knowing only the public key.

Parameters
For the protocol to work, the Paillier encryption scheme must use a modulus significantly larger
than the elliptic curve parameter . The Binance tss-lib library uses the secp256k curve with𝑞𝑞

bits and bits.|𝑞𝑞| = 256 |𝑁𝑁| = 2048

For developers who choose their own parameters, it is important to ensure that the elliptic curve
is sufficiently smaller than the Paillier modulus. The participants need to perform multiple
homomorphic operations on ciphertexts, and the plaintext cannot become greater than the size
of the Paillier modulus. The limit below is derived from the operation in Round 5, step 4:

𝑞𝑞2(2𝑡𝑡 + 1) + 𝑞𝑞 < 𝑁𝑁

03Robust CGG+21
This section goes through the CGG+21 threshold 
signature protocol and explains how to modify it to 
ensure robustness at every step.
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For convenience, we use the notation A ⊕ B to mean adding two ciphertexts and A ⊕ b to mean multiplying 
ciphertext A by a scalar value b. The operations ⊕ and ⊗ can be done knowing only the public key.

Parameters
For the protocol to work, the Paillier encryption scheme must use a modulus significantly larger than 
the elliptic curve parameter q. The Binance tss-lib library uses the secp256k curve with |q|=256 bits and 
|N|=2048 bits. 

For developers who choose their own parameters, it is important to ensure that the elliptic curve is 
sufficiently smaller than the Paillier modulus. The participants need to perform multiple homomorphic 
operations on ciphertexts, and the plaintext cannot become greater than the size of the Paillier modulus. 
The limit below is derived from the operation in Round 5, step 4: q2 (2t + 1) + q < N

Zero knowledge proofs
This table lists the CGG+21 zero-knowledge proofs we use, where to find them, and their sizes.

Developer Notes: 

1. The ∏log*protocol proves that some ciphertext C = Encrypt(x) and a point X = gx. The proof should 
allow the prover to supply an arbitrary points g as part of the statement, and not just default to the 
base point of the elliptic curve. 

Name Location Size Size with m = 2048-bit Pailler 
modulus, k = 256-bit ECDSA

∏mul Appendix C.6 Figure 29 9m 2.3 KB

∏mul* Appendix C.6 Figure 31 5m + 3k 1.3 KB

∏log* Appendix C.2 Figure 25 5m + 3k 1.3 KB

∏dec Appendix C.6 Figure 30 6m + 3k 1.6 KB

∏enc Section 6.1 Figure 14 6m + 2k 1.6 KB

∏aff-p Appendix C.3 Figure 26 13m + 4k 3.4 KB

∏aff-g Section 6.2 Figure 15 10m + 5k 2.7 KB

∏aff-g-inv Modified Figure 15 10m + 5k 2.7 KB
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proofs over arithmetic expressions. We briefly describe the encryption scheme, while omitting
some implementation details that have no bearing on our protocols.

1. chooses two -bit primes . The private key is a pair of(𝑝𝑝𝑘𝑘,  𝑠𝑠𝑘𝑘) ← 𝐾𝐾𝑒𝑒𝑦𝑦𝐺𝐺𝑒𝑒𝑛𝑛(1𝑘𝑘) 𝑘𝑘 (𝑝𝑝, 𝑞𝑞)
values that are deterministically precomputed from . The public key is an RSA(λ, ν) (𝑝𝑝, 𝑞𝑞)
modulus .𝑁𝑁 = 𝑝𝑝𝑞𝑞

2. chooses a random and outputs𝑐𝑐𝑡𝑡𝑒𝑒𝑥𝑥𝑡𝑡 ← 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑝𝑝𝑘𝑘, 𝑚𝑚𝑠𝑠𝑔𝑔) ρ ∈ 𝑍𝑍
𝑁𝑁

.𝑐𝑐𝑡𝑡𝑒𝑒𝑥𝑥𝑡𝑡 = (1 + 𝑁𝑁)𝑚𝑚𝑠𝑠𝑔𝑔 · ρ𝑁𝑁 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁2

3. . Computes the message and randomness used to(𝑚𝑚𝑠𝑠𝑔𝑔, ρ) ← 𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝑐𝑐𝑡𝑡𝑒𝑒𝑥𝑥𝑡𝑡) ρ
encrypt it. The full decryption algorithm is in Section 5 of Paillier99.

4. computes to get a ciphertext such that that𝑠𝑠𝑢𝑢𝑚𝑚 ← 𝐴𝐴 ⊕ 𝐵𝐵 𝑠𝑠𝑢𝑢𝑚𝑚 = 𝐴𝐴 · 𝐵𝐵  𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁2

.𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝑠𝑠𝑢𝑢𝑚𝑚) = 𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝐴𝐴) + 𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝐵𝐵)

5. computes to get a ciphertext such that that𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑𝑢𝑢𝑐𝑐𝑡𝑡 ← 𝐴𝐴 ⊗ 𝑏𝑏 𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑𝑢𝑢𝑐𝑐𝑡𝑡 = 𝐴𝐴𝑏𝑏 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁2

.𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑𝑢𝑢𝑐𝑐𝑡𝑡) = 𝑏𝑏 · 𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘, 𝐴𝐴)

For convenience, we use the notation to mean adding two ciphertexts and to𝐴𝐴 ⊕ 𝐵𝐵 𝐴𝐴 ⊗ 𝑏𝑏
mean multiplying ciphertext by a scalar value . The operations and can be done𝐴𝐴 𝑏𝑏 ⊕ ⊗
knowing only the public key.

Parameters
For the protocol to work, the Paillier encryption scheme must use a modulus significantly larger
than the elliptic curve parameter . The Binance tss-lib library uses the secp256k curve with𝑞𝑞

bits and bits.|𝑞𝑞| = 256 |𝑁𝑁| = 2048

For developers who choose their own parameters, it is important to ensure that the elliptic curve
is sufficiently smaller than the Paillier modulus. The participants need to perform multiple
homomorphic operations on ciphertexts, and the plaintext cannot become greater than the size
of the Paillier modulus. The limit below is derived from the operation in Round 5, step 4:

𝑞𝑞2(2𝑡𝑡 + 1) + 𝑞𝑞 < 𝑁𝑁
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2. The CGG+21 protocol recommends using the zero-knowledge proof ∏aff-gduring round 2 of pre-
signing. We found during implementation that we actually needed to make a slight modification to 
∏aff-g to make the protocol work. We provide our variation later in the document for the benefit of 
other developers. We call this variation ∏aff-g-inv.

Setup
A (t,n)-threshold signature scheme requires at least t + 1 participants to sign a message; any group of t or 
less participants cannot sign. CGG+21 uses Shamir secret sharing to distribute shares of the secret key 
x to n participants. When it comes time to sign, a committee of t + 1 participants converts their Shamir 
shares xi into additive shares wi such that x = ∑wi. The public values Xi = gxi are similarly converted into a 
public vector of values Wi = gwi. Each participant can independently perform the conversion for his share 
and the public values using standard techniques for dealing with Shamir shares. Thus, at the beginning of 
the signing protocol, every participating party Pi has a secret wi, and everyone knows a public vector of 
values W0,W1,...,Wt such that Wi = gwi. The goal is to compute an ECDSA signature (r,s) on common input 
message m. 

The following protocol is based on Figure 7 of CGG+21. We move some of the zero-knowledge proofs 
from the traitor-tracing steps to the actual round where the values being verified were initially broadcast. 
In case a zero-knowledge proof fails to verify, the participants stop and publish the identity of the culprit. 
For security, it is important to NOT publish a signature unless all proofs verify.

Signing protocol
We describe each round of the actual signing protocol. All non-proof values in our protocol must be 
broadcast. Participants may send proofs about the values via broadcast or peer-to-peer to the designated 
verifier. An auditor may monitor the entire transcript and verify all proofs using the public verifier 
parameters.

Public input Private input

m message to sign

g,y ECDSA public key

W0,W1,...,Wt wi s.t. Wi = gwi

pk0,pk1...,,pkt Paillier encryption keys ski Pailler secret key

rp0,rp1,...,rpt where each rpi=(h1 ,h2 ,Ñ) is a Ring Pedersen 
parameter generated by party Pi . Used for verifying 
designated-verifier zero-knowledge proofs.
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Round 1
This round is identical to CGG+21.

Round 2
This round modifies CGG+21 to use the ∏aff-g-inv proof.

13

Name Size Size with -bit Pailler modulus𝑚𝑚 = 2048
-bit ECDSA𝑘𝑘 = 256

𝐾𝐾
𝑖𝑖

2𝑚𝑚

𝐺𝐺
𝑖𝑖

2𝑚𝑚

ψ
𝑖𝑖,𝑗𝑗{ }

𝑗𝑗≠𝑖𝑖
𝑡𝑡 · (6𝑚𝑚 + 2𝑘𝑘)

Total 4𝑚𝑚 + 𝑡𝑡 · (6𝑚𝑚 + 2𝑘𝑘) 1. 5 · 𝑡𝑡 + 1 𝐾𝐾𝐵𝐵

Round 2

This round modifies CGG+21 to use the proof.Π𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔−𝑖𝑖𝑛𝑛𝑣𝑣

1. verifies each proof that it receives. If there is a problem, terminate and publish all𝑃𝑃
𝑖𝑖
 ψ

𝑗𝑗,𝑖𝑖

culprits.

2. sets and then prepares a message for every participant :𝑃𝑃
𝑖𝑖
 Γ

𝑖𝑖
= 𝑔𝑔

γ
𝑖𝑖 𝑃𝑃

𝑗𝑗
 

a. Choose .β
𝑖𝑖,𝑗𝑗

, β
^

𝑖𝑖,𝑗𝑗
← 𝑍𝑍

𝑞𝑞

b. and𝐷𝐷
𝑗𝑗,𝑖𝑖

= (γ
𝑖𝑖

⊗ 𝐾𝐾
𝑗𝑗
) ⊕ 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑞𝑞 − β

𝑖𝑖,𝑗𝑗
) 𝐹𝐹

𝑗𝑗,𝑖𝑖
= 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(β

𝑖𝑖,𝑗𝑗
)

c. and𝐷𝐷
^

𝑗𝑗,𝑖𝑖
= (γ

𝑖𝑖
⊗ 𝐾𝐾

𝑗𝑗
) ⊕ 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑞𝑞 − β

𝑖𝑖,𝑗𝑗
) 𝐹𝐹

^

𝑗𝑗,𝑖𝑖
= 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(β

^

𝑖𝑖,𝑗𝑗
)

d. creates for each participant a designated-verifier proof for𝑃𝑃
𝑖𝑖
 𝑃𝑃

𝑘𝑘
 Π𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔−𝑖𝑖𝑛𝑛𝑣𝑣 ψ

𝑖𝑖,𝑗𝑗,𝑘𝑘

the statement .(𝑞𝑞, 𝑔𝑔, 𝐺𝐺, 𝑁𝑁
𝑗𝑗
, 𝑁𝑁

𝑖𝑖
, Γ

𝑖𝑖
, 𝐹𝐹

𝑗𝑗,𝑖𝑖
, 𝐾𝐾

𝑖𝑖
, 𝐷𝐷

𝑗𝑗,𝑖𝑖
)

e. creates for each participant a designated-verifier proof for𝑃𝑃
𝑖𝑖
 𝑃𝑃

𝑘𝑘
 Π𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔−𝑖𝑖𝑛𝑛𝑣𝑣 ψ

^

𝑖𝑖,𝑗𝑗,𝑘𝑘

the statement (𝑞𝑞, 𝑔𝑔, 𝐺𝐺, 𝑁𝑁
𝑗𝑗
, 𝑁𝑁

𝑖𝑖
, Γ

𝑖𝑖
, 𝐹𝐹

^

𝑗𝑗,𝑖𝑖
, 𝐾𝐾

𝑖𝑖
, 𝐷𝐷

^

𝑗𝑗,𝑖𝑖
)

f. creates for each participant a designated-verifier proof for the𝑃𝑃
𝑖𝑖
 𝑃𝑃

𝑗𝑗
 Π𝑙𝑙𝑜𝑜𝑔𝑔* ψ'

𝑖𝑖,𝑗𝑗

statement , showing that and .(𝑞𝑞, 𝑔𝑔, 𝐺𝐺, 𝑁𝑁
𝑖𝑖
, 𝐺𝐺

𝑖𝑖
, Γ

𝑖𝑖
) Γ

𝑖𝑖
= 𝑔𝑔

γ
𝑖𝑖 𝐺𝐺

𝑖𝑖
= 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(γ

𝑖𝑖
)

Each participants broadcasts Γ
𝑖𝑖
,  𝐷𝐷

𝑗𝑗,𝑖𝑖
, 𝐷𝐷

^

𝑗𝑗,𝑖𝑖
, 𝐹𝐹

𝑗𝑗,𝑖𝑖
, 𝐹𝐹

^

𝑗𝑗,𝑖𝑖{ }
𝑗𝑗≠𝑖𝑖

,  ψ
𝑖𝑖,𝑗𝑗,𝑘𝑘

, ψ
^

𝑖𝑖,𝑗𝑗,𝑘𝑘{ }
𝑗𝑗,𝑘𝑘≠𝑖𝑖

, ψ'
𝑖𝑖,𝑗𝑗{ }

𝑗𝑗,≠𝑖𝑖

Name Size Size with m = 2048-bit Pailler modulus,  
k = 256-bit ECDSA

Ki 2m

Gi 2m

{ψi,j}j≠i t • (6m + 2k)

Total 4m + t • (6m + 2k) 1.5 • t + 1 KB

11

protocol, every participating party has a secret , and everyone knows a public vector of𝑃𝑃
𝑖𝑖
 𝑤𝑤

𝑖𝑖

values such that . The goal is to compute an ECDSA signature on𝑊𝑊
0
, 𝑊𝑊

1
, ..., 𝑊𝑊

𝑡𝑡
𝑊𝑊

𝑖𝑖
= 𝑔𝑔

𝑤𝑤
𝑖𝑖 (𝑟𝑟, 𝑠𝑠)

common input message .𝑚𝑚

Public Input Private Input

message to sign𝑚𝑚

ECDSA public key𝑔𝑔, 𝑦𝑦

𝑊𝑊
0
, 𝑊𝑊

1
, ..., 𝑊𝑊

𝑡𝑡 𝑤𝑤
𝑖𝑖
 𝑠𝑠. 𝑡𝑡.  𝑊𝑊

𝑖𝑖
= 𝑔𝑔

𝑤𝑤
𝑖𝑖

Paillier encryption keys𝑝𝑝𝑘𝑘
0
, 𝑝𝑝𝑘𝑘

1
, ..., 𝑝𝑝𝑘𝑘

𝑡𝑡
Pailler secret key𝑠𝑠𝑘𝑘

𝑖𝑖

where each is𝑟𝑟𝑝𝑝
0
, 𝑟𝑟𝑝𝑝

1
, ..., 𝑟𝑟𝑝𝑝

𝑡𝑡
𝑟𝑟𝑝𝑝

𝑖𝑖
= (ℎ

1
, ℎ

2
, 𝑁𝑁

~
)

a Ring Pedersen parameter generated by
party . Used for verifying designated-verifier𝑃𝑃

𝑖𝑖
zero-knowledge proofs.

The following protocol is based on Figure 7 of CGG+21. We move some of the zero-knowledge
proofs from the traitor-tracing steps to the actual round where the values being verified were
initially broadcast. In case a zero-knowledge proof fails to verify, the participants stop and
publish the identity of the culprit. For security, it is important to NOT publish a signature unless
all proofs verify.

Signing Protocol
We describe each round of the actual signing protocol. All non-proof values in our protocol must
be broadcast. Participants may send proofs about the values via broadcast or peer-to-peer to
the designated verifier. An auditor may monitor the entire transcript and verify all proofs using
the public verifier parameters.

Round 1
This round is identical to CGG+21.

1. selects a random pair of values and computes and𝑃𝑃
𝑖𝑖
 𝑘𝑘

𝑖𝑖
, γ

𝑖𝑖
∈ 𝑍𝑍

𝑞𝑞
 𝐾𝐾

𝑖𝑖
= 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑘𝑘

𝑖𝑖
)

under its own public key .𝐺𝐺
𝑖𝑖

= 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(γ
𝑖𝑖
) 𝑝𝑝𝑘𝑘

𝑖𝑖

2. creates for each participant a designated-verifier proof that knows the𝑃𝑃
𝑖𝑖
 𝑃𝑃

𝑗𝑗
 Π𝑒𝑒𝑛𝑛𝑐𝑐 ψ

𝑖𝑖,𝑗𝑗
𝑃𝑃

𝑖𝑖

decryption of . 𝐾𝐾
𝑖𝑖

12

Each participant broadcasts . Note: the participant will prove is formed correctly𝐾𝐾
𝑖𝑖
, 𝐺𝐺

𝑖𝑖
, {ψ

𝑖𝑖,𝑗𝑗
}
𝑗𝑗≠𝑖𝑖

𝐺𝐺
𝑖𝑖

in Round 2.
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Round 3
In this round, the participants must verify the messages intended for other participants as well as 
those meant for themselves. In addition, the participants will proactively broadcast a proof from the 
CGG+21 output phase that is normally done in reaction to something going wrong.

14

Name Size Size with -bit Pailler𝑚𝑚 = 2048
modulus
-bit ECDSA𝑘𝑘 = 256

Γ
𝑖𝑖

2𝑚𝑚

𝐷𝐷
𝑗𝑗,𝑖𝑖

, 𝐷𝐷
^

𝑗𝑗,𝑖𝑖
, 𝐹𝐹

𝑗𝑗,𝑖𝑖
, 𝐹𝐹

^

𝑗𝑗,𝑖𝑖{ }
𝑗𝑗≠𝑖𝑖

𝑡𝑡 · 8𝑚𝑚

ψ
𝑖𝑖,𝑗𝑗,𝑘𝑘{ }

𝑗𝑗,𝑘𝑘≠𝑖𝑖
𝑡𝑡2 · (10𝑚𝑚 + 5𝑘𝑘)

ψ
^

𝑖𝑖,𝑗𝑗,𝑘𝑘{ }
𝑗𝑗,𝑘𝑘≠𝑖𝑖

𝑡𝑡2 · (10𝑚𝑚 + 5𝑘𝑘)

Total 𝑡𝑡2 · (20𝑚𝑚 + 10𝑘𝑘) + 𝑡𝑡 · 8𝑚𝑚 + 2𝑚𝑚 5. 1 · 𝑡𝑡2 + 2𝑡𝑡 + 0. 5 𝐾𝐾𝐵𝐵

Round 3
In this round, the participants must verify the messages intended for other participants as well
as those meant for themselves. In addition, the participants will proactively broadcast a proof
from the CGG+21 output phase that is normally done in reaction to something going wrong.

1. will verify all proofs designated for its verification. It will terminate and publish any𝑃𝑃
𝑖𝑖

culprits if a proof fails.

a. proofΠ𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔−𝑖𝑖𝑛𝑛𝑣𝑣 ψ
𝑗𝑗,𝑖𝑖,𝑘𝑘{ }

𝑗𝑗,𝑘𝑘≠𝑖𝑖

b. proofΠ𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔−𝑖𝑖𝑛𝑛𝑣𝑣 ψ
^

𝑗𝑗,𝑖𝑖,𝑘𝑘{ }
𝑗𝑗,𝑘𝑘≠𝑖𝑖

c. proofΠ𝑙𝑙𝑜𝑜𝑔𝑔* ψ'
𝑗𝑗,𝑖𝑖{ }

𝑗𝑗≠𝑖𝑖

2. will compute and𝑃𝑃
𝑖𝑖

Γ = ΠΓ
𝑗𝑗
 ∆

𝑖𝑖
= Γ

𝑘𝑘
𝑖𝑖

a. For all ∀𝑗𝑗 ≠ 𝑖𝑖:  α
𝑖𝑖,𝑗𝑗

= 𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝐷𝐷
𝑖𝑖,𝑗𝑗

) 𝑎𝑎𝑛𝑛𝑑𝑑 α
^

𝑖𝑖,𝑗𝑗
= 𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝐷𝐷

^

𝑖𝑖,𝑗𝑗
)

b. δ
𝑖𝑖

= γ
𝑖𝑖
𝑘𝑘

𝑖𝑖
+

𝑗𝑗≠𝑖𝑖
∑ (α

𝑖𝑖,𝑗𝑗
+ β

𝑖𝑖,𝑗𝑗
) 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞

c. χ
𝑖𝑖

= 𝑤𝑤
𝑖𝑖
𝑘𝑘

𝑖𝑖
+

𝑗𝑗≠𝑖𝑖
∑ (α

^

𝑖𝑖,𝑗𝑗
+ β

^

𝑖𝑖,𝑗𝑗
) 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞

d. creates for each participant a designated-verifier proof for the𝑃𝑃
𝑖𝑖
 𝑃𝑃

𝑗𝑗
 Π𝑙𝑙𝑜𝑜𝑔𝑔* ψ''

𝑖𝑖,𝑗𝑗

statement , showing that and .(𝑞𝑞, Γ, 𝐺𝐺, 𝑁𝑁
𝑖𝑖
, 𝐾𝐾

𝑖𝑖
, ∆

𝑖𝑖
) ∆

𝑖𝑖
= Γ𝑘𝑘 𝐾𝐾

𝑖𝑖
= 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑘𝑘

𝑖𝑖
)

15

e. computes . Then he creates a single proof for𝑃𝑃
𝑖𝑖
 𝐻𝐻

𝑖𝑖
= 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑘𝑘

𝑖𝑖
· γ

𝑖𝑖
) Π𝑚𝑚𝑢𝑢𝑙𝑙 ψ𝐻𝐻

𝑖𝑖

the statement .(𝑞𝑞, 𝑁𝑁
𝑖𝑖
, 𝐺𝐺

𝑖𝑖
, 𝐾𝐾

𝑖𝑖
, 𝐻𝐻

𝑖𝑖
)

f. computes .𝑃𝑃
𝑖𝑖
 ∆

𝑖𝑖

~
= 𝐻𝐻

𝑖𝑖
⊕

∀𝑗𝑗≠𝑖𝑖
𝐷𝐷

𝑖𝑖,𝑗𝑗
⊕ 𝐹𝐹

𝑗𝑗,𝑖𝑖( )
g. creates for each participant a designated-verifier proof for the𝑃𝑃

𝑖𝑖
 𝑃𝑃

𝑗𝑗
 Π𝑑𝑑𝑒𝑒𝑐𝑐 ψδ

𝑖𝑖,𝑗𝑗

statement .(𝑞𝑞, 𝑁𝑁
𝑖𝑖
, ∆

𝑖𝑖

~
, δ

𝑖𝑖
)

Each participant broadcasts .𝑃𝑃
𝑖𝑖
 δ

𝑖𝑖
, ∆

𝑖𝑖
, 𝐻𝐻

𝑖𝑖
, ψ𝐻𝐻

𝑖𝑖
, ψ''

𝑖𝑖,𝑗𝑗
, ψδ

𝑖𝑖,𝑗𝑗{ }
𝑗𝑗≠𝑖𝑖

Name Size Size with -bit Pailler𝑚𝑚 = 2048
modulus
-bit ECDSA𝑘𝑘 = 256

δ
𝑖𝑖
, ∆

𝑖𝑖
2𝑘𝑘

𝐻𝐻
𝑖𝑖

2𝑚𝑚

ψ𝐻𝐻
𝑖𝑖

9𝑚𝑚

ψ''
𝑖𝑖,𝑗𝑗{ }

𝑗𝑗≠𝑖𝑖
𝑡𝑡 · (5𝑚𝑚 + 3𝑘𝑘)

ψδ
𝑖𝑖,𝑗𝑗{ }

𝑗𝑗≠𝑖𝑖

𝑡𝑡 · (6𝑚𝑚 + 3𝑘𝑘)

Total 𝑡𝑡 · (11𝑚𝑚 + 6𝑘𝑘) + 11𝑚𝑚 + 2𝑘𝑘 2. 8 · 𝑡𝑡 + 2. 8 𝐾𝐾𝐵𝐵

Round 4
This round is the output round of the pre-signing computation. The participants verify all proofs,
save state, and stop. No messages are sent. In an on-line signing scenario, the participants can
combine Round 4 and Round 5 into a single round.

1. Participants computes .𝑃𝑃
𝑖𝑖
 ∀𝑗𝑗:  ∆

𝑗𝑗

~
= 𝐻𝐻

𝑖𝑖
⊕

∀𝑘𝑘≠𝑗𝑗
𝐷𝐷

𝑗𝑗,𝑘𝑘
⊕ 𝐹𝐹

𝑘𝑘,𝑗𝑗( )
2. Participant verifies , and .𝑃𝑃

𝑖𝑖
 ∀𝑗𝑗:  ψ𝐻𝐻

𝑗𝑗
,  ψ''

𝑗𝑗,𝑖𝑖
ψδ

𝑗𝑗,𝑖𝑖

3. The participant computes and .δ = ∑ δ
𝑗𝑗
 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞 𝑅𝑅 = Γδ−1

The participant saves .𝑘𝑘
𝑖𝑖
, 𝐾𝐾

𝑖𝑖
, χ

𝑖𝑖
, Γ, 𝑅𝑅, 𝐹𝐹

^

𝑗𝑗,𝑖𝑖
, 𝐷𝐷

^

𝑗𝑗,𝑖𝑖{ }
𝑗𝑗≠𝑖𝑖

Name Size Size with m = 2048-bit Pailler modulus,  
k = 256-bit ECDSA

Гi 2m

{Dj,i, Dj,i, Fj,i, Fj,i}j≠i t • 8m

{ψi,j,k }j,k≠i
t2 • (10m + 5k)

{ψi,j,k }j,k≠i
t2 • (10m + 5k)

Total t2 • (20m + 10k) + t • 8m + 2m 5.1 • t2 + 2t + 0.5KB
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Round 5 - Signing
This round can be combined with round 4. The participant receives the message that needs𝑚𝑚
to be signed.

1. Participants computes and .𝑃𝑃
𝑖𝑖
 𝑟𝑟 = 𝑅𝑅|

𝑥𝑥−𝑎𝑎𝑥𝑥𝑖𝑖𝑠𝑠
σ

𝑖𝑖
= 𝑘𝑘

𝑖𝑖
· 𝑚𝑚 + 𝑟𝑟 · χ

𝑖𝑖
 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞

2. Participants computes𝑃𝑃
𝑖𝑖
  𝐻𝐻

^

𝑖𝑖
= 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑤𝑤

𝑖𝑖
, 𝑘𝑘

𝑖𝑖
)

3. creates for each participant a designated-verifier proof for the statement𝑃𝑃
𝑖𝑖
 𝑃𝑃

𝑗𝑗
 Π𝑚𝑚𝑢𝑢𝑙𝑙* ψ𝐻𝐻

^

𝑖𝑖,𝑗𝑗

.(𝑞𝑞, 𝑁𝑁
𝑖𝑖
, 𝑊𝑊

𝑖𝑖
, 𝐾𝐾

𝑖𝑖
, 𝐻𝐻

^

𝑖𝑖
)

4. Participant computes the encryption of as:𝑃𝑃
𝑖𝑖
 σ

𝑖𝑖

.Σ
𝑖𝑖

= 𝑚𝑚 ⊗ 𝐾𝐾
𝑖𝑖( ) ⊕ 𝑟𝑟 ⊗ 𝐻𝐻

^

𝑖𝑖
⊕

∀𝑗𝑗≠𝑖𝑖
𝐷𝐷
^

𝑖𝑖,𝑗𝑗
⊕ 𝐹𝐹

^

𝑗𝑗,𝑖𝑖( )( )( )
5. creates for each participant a designated-verifier proof for the statement𝑃𝑃

𝑖𝑖
 𝑃𝑃

𝑗𝑗
 Π𝑑𝑑𝑒𝑒𝑐𝑐 ψσ

𝑗𝑗,𝑖𝑖

.(𝑞𝑞, 𝑁𝑁
𝑖𝑖
, Σ

𝑖𝑖
, σ

𝑖𝑖
)

Each participant broadcasts .𝑃𝑃
𝑖𝑖
 σ

𝑖𝑖
, 𝐻𝐻

^

𝑖𝑖
, ψ𝐻𝐻

^

𝑖𝑖,𝑗𝑗
, ψα

𝑖𝑖,𝑗𝑗{ }
𝑗𝑗≠𝑖𝑖

Name Size Size with -bit Pailler𝑚𝑚 = 2048
modulus
-bit ECDSA𝑘𝑘 = 256

σ
𝑖𝑖

𝑘𝑘

𝐻𝐻
^

𝑖𝑖
2𝑚𝑚

ψ𝐻𝐻
^

𝑖𝑖,𝑗𝑗{ }
𝑗𝑗≠𝑖𝑖

𝑡𝑡 · (5𝑚𝑚 + 3𝑘𝑘)

ψα
𝑖𝑖,𝑗𝑗{ }

𝑗𝑗≠𝑖𝑖

𝑡𝑡 · (6𝑚𝑚 + 3𝑘𝑘)

Total 𝑡𝑡 · (11𝑚𝑚 + 6𝑘𝑘) + 2𝑚𝑚 + 𝑘𝑘 2. 8 · 𝑡𝑡 + 0. 5 𝐾𝐾𝐵𝐵

Round 6
The participants verify the proofs and output the signature. This step can be done by only one
participant or trusted a third party observer.

Round 4
This round is the output round of the pre-signing computation. The participants verify all proofs, save 
state, and stop. No messages are sent. In an on-line signing scenario, the participants can combine 
Round 4 and Round 5 into a single round.

Round 5 Signing
This round can be combined with round 4. The participant receives the message m that needs to be 
signed.

Name Size Size with m = 2048-bit Pailler modulus,  
k = 256-bit ECDSA

δi ,  Δi 2k

Hi 2m

ψH

i
9m

{ψ''
i,j }j≠i

t • (5m + 3k)

{ψδ
i,j }j≠i

t • (6m + 5k)

Total t • (11m + 6k) + 11m + 2k 2.8 • t + 2.8KB
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e. computes . Then he creates a single proof for𝑃𝑃
𝑖𝑖
 𝐻𝐻

𝑖𝑖
= 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑘𝑘

𝑖𝑖
· γ

𝑖𝑖
) Π𝑚𝑚𝑢𝑢𝑙𝑙 ψ𝐻𝐻

𝑖𝑖

the statement .(𝑞𝑞, 𝑁𝑁
𝑖𝑖
, 𝐺𝐺

𝑖𝑖
, 𝐾𝐾

𝑖𝑖
, 𝐻𝐻

𝑖𝑖
)

f. computes .𝑃𝑃
𝑖𝑖
 ∆

𝑖𝑖

~
= 𝐻𝐻

𝑖𝑖
⊕

∀𝑗𝑗≠𝑖𝑖
𝐷𝐷

𝑖𝑖,𝑗𝑗
⊕ 𝐹𝐹

𝑗𝑗,𝑖𝑖( )
g. creates for each participant a designated-verifier proof for the𝑃𝑃

𝑖𝑖
 𝑃𝑃

𝑗𝑗
 Π𝑑𝑑𝑒𝑒𝑐𝑐 ψδ

𝑖𝑖,𝑗𝑗

statement .(𝑞𝑞, 𝑁𝑁
𝑖𝑖
, ∆

𝑖𝑖

~
, δ

𝑖𝑖
)

Each participant broadcasts .𝑃𝑃
𝑖𝑖
 δ

𝑖𝑖
, ∆

𝑖𝑖
, 𝐻𝐻

𝑖𝑖
, ψ𝐻𝐻

𝑖𝑖
, ψ''

𝑖𝑖,𝑗𝑗
, ψδ

𝑖𝑖,𝑗𝑗{ }
𝑗𝑗≠𝑖𝑖

Name Size Size with -bit Pailler𝑚𝑚 = 2048
modulus
-bit ECDSA𝑘𝑘 = 256

δ
𝑖𝑖
, ∆

𝑖𝑖
2𝑘𝑘

𝐻𝐻
𝑖𝑖

2𝑚𝑚

ψ𝐻𝐻
𝑖𝑖

9𝑚𝑚

ψ''
𝑖𝑖,𝑗𝑗{ }

𝑗𝑗≠𝑖𝑖
𝑡𝑡 · (5𝑚𝑚 + 3𝑘𝑘)

ψδ
𝑖𝑖,𝑗𝑗{ }

𝑗𝑗≠𝑖𝑖

𝑡𝑡 · (6𝑚𝑚 + 3𝑘𝑘)

Total 𝑡𝑡 · (11𝑚𝑚 + 6𝑘𝑘) + 11𝑚𝑚 + 2𝑘𝑘 2. 8 · 𝑡𝑡 + 2. 8 𝐾𝐾𝐵𝐵

Round 4
This round is the output round of the pre-signing computation. The participants verify all proofs,
save state, and stop. No messages are sent. In an on-line signing scenario, the participants can
combine Round 4 and Round 5 into a single round.

1. Participants computes .𝑃𝑃
𝑖𝑖
 ∀𝑗𝑗:  ∆

𝑗𝑗

~
= 𝐻𝐻

𝑖𝑖
⊕

∀𝑘𝑘≠𝑗𝑗
𝐷𝐷

𝑗𝑗,𝑘𝑘
⊕ 𝐹𝐹

𝑘𝑘,𝑗𝑗( )
2. Participant verifies , and .𝑃𝑃

𝑖𝑖
 ∀𝑗𝑗:  ψ𝐻𝐻

𝑗𝑗
,  ψ''

𝑗𝑗,𝑖𝑖
ψδ

𝑗𝑗,𝑖𝑖

3. The participant computes and .δ = ∑ δ
𝑗𝑗
 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞 𝑅𝑅 = Γδ−1

The participant saves .𝑘𝑘
𝑖𝑖
, 𝐾𝐾

𝑖𝑖
, χ

𝑖𝑖
, Γ, 𝑅𝑅, 𝐹𝐹

^

𝑗𝑗,𝑖𝑖
, 𝐷𝐷

^

𝑗𝑗,𝑖𝑖{ }
𝑗𝑗≠𝑖𝑖

16

Round 5 - Signing
This round can be combined with round 4. The participant receives the message that needs𝑚𝑚
to be signed.

1. Participants computes and .𝑃𝑃
𝑖𝑖
 𝑟𝑟 = 𝑅𝑅|

𝑥𝑥−𝑎𝑎𝑥𝑥𝑖𝑖𝑠𝑠
σ

𝑖𝑖
= 𝑘𝑘

𝑖𝑖
· 𝑚𝑚 + 𝑟𝑟 · χ

𝑖𝑖
 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞

2. Participants computes𝑃𝑃
𝑖𝑖
  𝐻𝐻

^

𝑖𝑖
= 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑤𝑤

𝑖𝑖
, 𝑘𝑘

𝑖𝑖
)

3. creates for each participant a designated-verifier proof for the statement𝑃𝑃
𝑖𝑖
 𝑃𝑃

𝑗𝑗
 Π𝑚𝑚𝑢𝑢𝑙𝑙* ψ𝐻𝐻

^

𝑖𝑖,𝑗𝑗

.(𝑞𝑞, 𝑁𝑁
𝑖𝑖
, 𝑊𝑊

𝑖𝑖
, 𝐾𝐾

𝑖𝑖
, 𝐻𝐻

^

𝑖𝑖
)

4. Participant computes the encryption of as:𝑃𝑃
𝑖𝑖
 σ

𝑖𝑖

.Σ
𝑖𝑖

= 𝑚𝑚 ⊗ 𝐾𝐾
𝑖𝑖( ) ⊕ 𝑟𝑟 ⊗ 𝐻𝐻

^

𝑖𝑖
⊕

∀𝑗𝑗≠𝑖𝑖
𝐷𝐷
^

𝑖𝑖,𝑗𝑗
⊕ 𝐹𝐹

^

𝑗𝑗,𝑖𝑖( )( )( )
5. creates for each participant a designated-verifier proof for the statement𝑃𝑃

𝑖𝑖
 𝑃𝑃

𝑗𝑗
 Π𝑑𝑑𝑒𝑒𝑐𝑐 ψσ

𝑗𝑗,𝑖𝑖

.(𝑞𝑞, 𝑁𝑁
𝑖𝑖
, Σ

𝑖𝑖
, σ

𝑖𝑖
)

Each participant broadcasts .𝑃𝑃
𝑖𝑖
 σ

𝑖𝑖
, 𝐻𝐻

^

𝑖𝑖
, ψ𝐻𝐻

^

𝑖𝑖,𝑗𝑗
, ψα

𝑖𝑖,𝑗𝑗{ }
𝑗𝑗≠𝑖𝑖

Name Size Size with -bit Pailler𝑚𝑚 = 2048
modulus
-bit ECDSA𝑘𝑘 = 256

σ
𝑖𝑖

𝑘𝑘

𝐻𝐻
^

𝑖𝑖
2𝑚𝑚

ψ𝐻𝐻
^

𝑖𝑖,𝑗𝑗{ }
𝑗𝑗≠𝑖𝑖

𝑡𝑡 · (5𝑚𝑚 + 3𝑘𝑘)

ψα
𝑖𝑖,𝑗𝑗{ }

𝑗𝑗≠𝑖𝑖

𝑡𝑡 · (6𝑚𝑚 + 3𝑘𝑘)

Total 𝑡𝑡 · (11𝑚𝑚 + 6𝑘𝑘) + 2𝑚𝑚 + 𝑘𝑘 2. 8 · 𝑡𝑡 + 0. 5 𝐾𝐾𝐵𝐵

Round 6
The participants verify the proofs and output the signature. This step can be done by only one
participant or trusted a third party observer.
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Name Size Size with m = 2048-bit Pailler modulus,  
k = 256-bit ECDSA

σi k

Hi 2m

{ψH

i,j} t • (5m + 3k)

{ψα

i,j }j≠i
t • (6m + 3k)

Total t • (11m + 6k) + 2m + k 2.8 • t + 0.5KB

Round 6
The participants verify the proofs and output the signature. This step can be done by only one 
participant or trusted a third party observer.

Robust Key Generation
The key generation protocol in CGG+21 is identical to GG18. It has proofs of correctness at every 
step because it relies on VSS.

Robust Key Refresh
CGG+21 does not have a key refresh protocol. Binance published its own as part of tss-lib. It has 
proofs of correctness at every step because it relies on VSS.

Proof Aff-G-Inv

17

1. Participant computes for each participant the encryption of as𝑃𝑃
𝑖𝑖
 𝑃𝑃

𝑗𝑗
 σ

𝑗𝑗

Σ
𝑗𝑗

= 𝑚𝑚 ⊗ 𝐾𝐾
𝑗𝑗( ) ⊕ 𝑟𝑟 ⊗ 𝐻𝐻

^

𝑗𝑗
⊕

∀𝑘𝑘≠𝑗𝑗
𝐷𝐷
^

𝑗𝑗,𝑘𝑘
⊕ 𝐹𝐹

^

𝑘𝑘,𝑗𝑗( )( )( )
2. verifies for each participant proof and .𝑃𝑃

𝑖𝑖
 𝑃𝑃

𝑗𝑗
 ψ𝐻𝐻

^

𝑗𝑗,𝑖𝑖
ψα

𝑗𝑗,𝑖𝑖

3. computes .𝑃𝑃
𝑖𝑖
 σ = Σσ

𝑗𝑗
 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞

The participant outputs the signature is .(𝑟𝑟, σ)

Robust Key Generation
The key generation protocol in CGG+21 is identical to GG18. It has proofs of correctness at
every step because it relies on VSS.

Robust Key Refresh
CGG+21 does not have a key refresh protocol. Binance published its own as part of tss-lib. It
has proofs of correctness at every step because it relies on VSS.

Proof Aff-G-Inv
CGG+21 Section 6, Figure 14 presents a zero-knowledge proof that the prover knowsΠ𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔

values such that:(𝑥𝑥,  𝑦𝑦,  ρ,  ρ
𝑦𝑦
)

● 𝑋𝑋 = 𝑔𝑔𝑥𝑥 ∈ 𝐺𝐺

● 𝑌𝑌 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
1
,  𝑦𝑦,  ρ) = (1 + 𝑁𝑁

1
)𝑦𝑦 · ρ

𝑁𝑁
1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

1
2

● 𝐷𝐷 = 𝐶𝐶𝑥𝑥 · 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
0
, 𝑦𝑦,  ρ

𝑦𝑦
) = 𝐶𝐶𝑥𝑥 · (1 + 𝑁𝑁

0
)𝑦𝑦 · ρ

𝑦𝑦
𝑁𝑁

0  𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁
0

2

The verifier checks the proof against the statement .(𝑔𝑔, 𝐺𝐺, 𝑁𝑁
0
, 𝑁𝑁

1
, 𝑋𝑋, 𝑌𝑌, 𝐶𝐶, 𝐷𝐷)

During round 2 of the pre-signing protocol in CGG+21 Section 4 Figure 7, the reader is directed
to prove a very similar statement that only differs in the value: the ciphertext is an encryption𝐷𝐷
of instead of as above. In this proof, the prover knows values such that𝑞𝑞 − 𝑦𝑦 𝑦𝑦 (𝑥𝑥,  𝑦𝑦,  ρ,  ρ

𝑦𝑦
)

● 𝑋𝑋 = 𝑔𝑔𝑥𝑥 ∈ 𝐺𝐺

● 𝑌𝑌 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
1
,  𝑦𝑦,  ρ) = (1 + 𝑁𝑁

1
)𝑦𝑦 · ρ

𝑁𝑁
1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

1
2

● 𝐷𝐷 = 𝐶𝐶𝑥𝑥 · 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
0
, 𝑞𝑞 − 𝑦𝑦,  ρ

𝑦𝑦
) = 𝐶𝐶𝑥𝑥 · (1 + 𝑁𝑁

0
)(𝑞𝑞−𝑦𝑦) · ρ

𝑦𝑦
𝑁𝑁

0 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁
1

2
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1. Participant computes for each participant the encryption of as𝑃𝑃
𝑖𝑖
 𝑃𝑃

𝑗𝑗
 σ

𝑗𝑗

Σ
𝑗𝑗

= 𝑚𝑚 ⊗ 𝐾𝐾
𝑗𝑗( ) ⊕ 𝑟𝑟 ⊗ 𝐻𝐻

^

𝑗𝑗
⊕

∀𝑘𝑘≠𝑗𝑗
𝐷𝐷
^

𝑗𝑗,𝑘𝑘
⊕ 𝐹𝐹

^

𝑘𝑘,𝑗𝑗( )( )( )
2. verifies for each participant proof and .𝑃𝑃

𝑖𝑖
 𝑃𝑃

𝑗𝑗
 ψ𝐻𝐻

^

𝑗𝑗,𝑖𝑖
ψα

𝑗𝑗,𝑖𝑖

3. computes .𝑃𝑃
𝑖𝑖
 σ = Σσ

𝑗𝑗
 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞

The participant outputs the signature is .(𝑟𝑟, σ)

Robust Key Generation
The key generation protocol in CGG+21 is identical to GG18. It has proofs of correctness at
every step because it relies on VSS.

Robust Key Refresh
CGG+21 does not have a key refresh protocol. Binance published its own as part of tss-lib. It
has proofs of correctness at every step because it relies on VSS.

Proof Aff-G-Inv
CGG+21 Section 6, Figure 14 presents a zero-knowledge proof that the prover knowsΠ𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔

values such that:(𝑥𝑥,  𝑦𝑦,  ρ,  ρ
𝑦𝑦
)

● 𝑋𝑋 = 𝑔𝑔𝑥𝑥 ∈ 𝐺𝐺

● 𝑌𝑌 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
1
,  𝑦𝑦,  ρ) = (1 + 𝑁𝑁

1
)𝑦𝑦 · ρ

𝑁𝑁
1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

1
2

● 𝐷𝐷 = 𝐶𝐶𝑥𝑥 · 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
0
, 𝑦𝑦,  ρ

𝑦𝑦
) = 𝐶𝐶𝑥𝑥 · (1 + 𝑁𝑁

0
)𝑦𝑦 · ρ

𝑦𝑦
𝑁𝑁

0  𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁
0

2

The verifier checks the proof against the statement .(𝑔𝑔, 𝐺𝐺, 𝑁𝑁
0
, 𝑁𝑁

1
, 𝑋𝑋, 𝑌𝑌, 𝐶𝐶, 𝐷𝐷)

During round 2 of the pre-signing protocol in CGG+21 Section 4 Figure 7, the reader is directed
to prove a very similar statement that only differs in the value: the ciphertext is an encryption𝐷𝐷
of instead of as above. In this proof, the prover knows values such that𝑞𝑞 − 𝑦𝑦 𝑦𝑦 (𝑥𝑥,  𝑦𝑦,  ρ,  ρ

𝑦𝑦
)

● 𝑋𝑋 = 𝑔𝑔𝑥𝑥 ∈ 𝐺𝐺

● 𝑌𝑌 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
1
,  𝑦𝑦,  ρ) = (1 + 𝑁𝑁

1
)𝑦𝑦 · ρ

𝑁𝑁
1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

1
2

● 𝐷𝐷 = 𝐶𝐶𝑥𝑥 · 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
0
, 𝑞𝑞 − 𝑦𝑦,  ρ

𝑦𝑦
) = 𝐶𝐶𝑥𝑥 · (1 + 𝑁𝑁

0
)(𝑞𝑞−𝑦𝑦) · ρ

𝑦𝑦
𝑁𝑁

0 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁
1

2
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1. Participant computes for each participant the encryption of as𝑃𝑃
𝑖𝑖
 𝑃𝑃

𝑗𝑗
 σ

𝑗𝑗

Σ
𝑗𝑗

= 𝑚𝑚 ⊗ 𝐾𝐾
𝑗𝑗( ) ⊕ 𝑟𝑟 ⊗ 𝐻𝐻

^

𝑗𝑗
⊕

∀𝑘𝑘≠𝑗𝑗
𝐷𝐷
^

𝑗𝑗,𝑘𝑘
⊕ 𝐹𝐹

^

𝑘𝑘,𝑗𝑗( )( )( )
2. verifies for each participant proof and .𝑃𝑃

𝑖𝑖
 𝑃𝑃

𝑗𝑗
 ψ𝐻𝐻

^

𝑗𝑗,𝑖𝑖
ψα

𝑗𝑗,𝑖𝑖

3. computes .𝑃𝑃
𝑖𝑖
 σ = Σσ

𝑗𝑗
 𝑚𝑚𝑜𝑜𝑑𝑑 𝑞𝑞

The participant outputs the signature is .(𝑟𝑟, σ)

Robust Key Generation
The key generation protocol in CGG+21 is identical to GG18. It has proofs of correctness at
every step because it relies on VSS.

Robust Key Refresh
CGG+21 does not have a key refresh protocol. Binance published its own as part of tss-lib. It
has proofs of correctness at every step because it relies on VSS.

Proof Aff-G-Inv
CGG+21 Section 6, Figure 14 presents a zero-knowledge proof that the prover knowsΠ𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔

values such that:(𝑥𝑥,  𝑦𝑦,  ρ,  ρ
𝑦𝑦
)

● 𝑋𝑋 = 𝑔𝑔𝑥𝑥 ∈ 𝐺𝐺

● 𝑌𝑌 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
1
,  𝑦𝑦,  ρ) = (1 + 𝑁𝑁

1
)𝑦𝑦 · ρ

𝑁𝑁
1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

1
2

● 𝐷𝐷 = 𝐶𝐶𝑥𝑥 · 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
0
, 𝑦𝑦,  ρ

𝑦𝑦
) = 𝐶𝐶𝑥𝑥 · (1 + 𝑁𝑁

0
)𝑦𝑦 · ρ

𝑦𝑦
𝑁𝑁

0  𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁
0

2

The verifier checks the proof against the statement .(𝑔𝑔, 𝐺𝐺, 𝑁𝑁
0
, 𝑁𝑁

1
, 𝑋𝑋, 𝑌𝑌, 𝐶𝐶, 𝐷𝐷)

During round 2 of the pre-signing protocol in CGG+21 Section 4 Figure 7, the reader is directed
to prove a very similar statement that only differs in the value: the ciphertext is an encryption𝐷𝐷
of instead of as above. In this proof, the prover knows values such that𝑞𝑞 − 𝑦𝑦 𝑦𝑦 (𝑥𝑥,  𝑦𝑦,  ρ,  ρ

𝑦𝑦
)

● 𝑋𝑋 = 𝑔𝑔𝑥𝑥 ∈ 𝐺𝐺

● 𝑌𝑌 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
1
,  𝑦𝑦,  ρ) = (1 + 𝑁𝑁

1
)𝑦𝑦 · ρ

𝑁𝑁
1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

1
2

● 𝐷𝐷 = 𝐶𝐶𝑥𝑥 · 𝐸𝐸𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑁𝑁
0
, 𝑞𝑞 − 𝑦𝑦,  ρ

𝑦𝑦
) = 𝐶𝐶𝑥𝑥 · (1 + 𝑁𝑁

0
)(𝑞𝑞−𝑦𝑦) · ρ

𝑦𝑦
𝑁𝑁

0 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁
1

2
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Aff-G-Inv Proof. The prover has private input and public input(𝑥𝑥,  𝑦𝑦,  ρ,  ρ
𝑦𝑦
)

.(𝑞𝑞, 𝑔𝑔, 𝐺𝐺, 𝑁𝑁
0
, 𝑁𝑁

1
, 𝑋𝑋, 𝑌𝑌, 𝐶𝐶, 𝐷𝐷)

1. The prover computes

.𝑌𝑌
^

= 𝑌𝑌−1( ) · 1 + 𝑁𝑁
1( )𝑞𝑞−𝑁𝑁

1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁
1

2 = 1 + 𝑁𝑁
1( )(𝑞𝑞−𝑦𝑦)−𝑁𝑁

1 · ψ
𝑦𝑦

𝑁𝑁
1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

1
2

2. Then the prover computes to get the message and𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑡𝑡(𝑠𝑠𝑘𝑘
1
,  𝑌𝑌

^
) 𝑞𝑞 − 𝑦𝑦 − 𝑁𝑁

1

randomness ψ
𝑦𝑦

3. The prover computes 𝐷𝐷
^

= 𝐶𝐶𝑥𝑥 · (1 + 𝑁𝑁
0
)𝑞𝑞−𝑦𝑦 · ψ

𝑁𝑁
0 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

0
2

4. The prover outputs the proof using private input and public inputΠ𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔 (𝑥𝑥,  𝑦𝑦,  ψ,  ψ
𝑦𝑦
)

. Note: it is important to use the original instead of .(𝑞𝑞, 𝑔𝑔, 𝐺𝐺, 𝑁𝑁1, 𝑋𝑋, 𝑌𝑌, 𝐶𝐶, 𝐷𝐷
^
) 𝑌𝑌 𝑌𝑌

^

Aff-G-Inv Verification. The verifier gets the statement and an(𝑞𝑞, 𝑔𝑔, 𝐺𝐺, 𝑁𝑁
0
, 𝑁𝑁

1
, 𝑋𝑋, 𝑌𝑌, 𝐶𝐶, 𝐷𝐷

^
) Π𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔

proof .π

1. The verifier computes .𝑌𝑌
^

= 𝑌𝑌−1( ) · 1 + 𝑁𝑁
1( )𝑞𝑞−𝑁𝑁

1 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁
1

2

2. The verifier creates a new statement and verifies proof .(𝑞𝑞, 𝑔𝑔, 𝐺𝐺, 𝑁𝑁
1
, 𝑋𝑋, 𝑌𝑌

^
, 𝐶𝐶, 𝐷𝐷

^
) Π𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔 π

is a sigma protocol. The special honest verifier zero-knowledge property trivially holds onΠ𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔

because we use the same simulator as for . Similarly, the same specialΠ𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔−𝑖𝑖𝑛𝑛𝑣𝑣 Π𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔

soundness extractor works on . Specifically, the proof contains valuesΠ𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔−𝑖𝑖𝑛𝑛𝑣𝑣 Π𝑎𝑎𝑓𝑓𝑓𝑓−𝑔𝑔

, , , and where is the challenge. It is𝑧𝑧
1

= α + 𝑒𝑒𝑥𝑥 𝑧𝑧
2

= β + 𝑒𝑒𝑦𝑦 𝑧𝑧
1

= γ + 𝑒𝑒𝑚𝑚 𝑧𝑧
4

= δ + 𝑒𝑒µ 𝑒𝑒

straightforward to extract secrets given a second challenge and a set of(α, 𝑥𝑥, β, 𝑦𝑦, γ, 𝑚𝑚, δ, ν) 𝑒𝑒'
values , , , and . Having recovered these𝑧𝑧'

1
= α + 𝑒𝑒'𝑥𝑥 𝑧𝑧'

2
= β + 𝑒𝑒'𝑦𝑦 𝑧𝑧'

1
= γ + 𝑒𝑒'𝑚𝑚 𝑧𝑧'

4
= δ + 𝑒𝑒'µ

values, the simulator has enough information to solve for the remaining secret values.
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