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Abstract

We investigate the factors influencing cryptocurrency returns using a structural
vector auto-regressive model. The model uses asset price co-movements to identify
the impact of monetary policy and risk sentiment in conventional markets on crypto
asset prices, with minimal reverse spillover. Specifically, we decompose daily Bit-
coin returns into components reflecting conventional risk premia, monetary policy, and
crypto-specific shocks. We further decompose the crypto-specific shocks into changes
in crypto risk premia and levels of crypto adoption by exploiting the co-movement of
Bitcoin with stablecoin market capitalization.

Our analysis shows that crypto asset prices are significantly impacted by conven-
tional risk and monetary policy factors. Notably, contractionary monetary policy ac-
counted for over two-thirds of Bitcoin’s sharp decline in 2022. In contrast, since 2023
the compression of crypto risk premia has been the predominant driver of crypto re-
turns, independent of the buoyant equity market backdrop. Our findings highlight the
importance of identifying drivers of crypto returns and understanding crypto’s evolving
relationship with traditional financial markets.
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1 Introduction

Understanding the drivers of cryptocurrency prices and their relationship with conven-

tional financial markets is an important yet challenging task for economists, policymakers,

and investors. As cryptocurrencies gain popularity and mainstream acceptance, their poten-

tial impact on the broader financial system increases. However, the factors influencing cryp-

tocurrency price movements and crypto’s interconnectedness with traditional asset classes

are not yet fully understood.

This paper aims to shed light on the drivers of crypto assets through the lens of a sign-

restricted vector auto-regressive (VAR) model. Figure 1 illustrates our approach’s usefulness

in decomposing Bitcoin returns into three structural shocks: conventional monetary policy

shocks, conventional risk premium shocks, and crypto-specific demand shocks. The figure

shows the decomposition both cumulatively from 2019 to 2024 (Panel A) and year-by-year

(Panel B).

The model suggests that conventional shocks can significantly influence the returns of a

new asset class. For instance, monetary policy shocks contributed 50 percentage points to

Bitcoin’s increase in 2020, but contributed more than −50 percentage points to Bitcoin’s

decrease in 2022. Said differently, the model suggests that if the Fed had not unexpect-

edly tightened its monetary policy stance over the course of 2022, Bitcoin returns would

have been more than 50 percentage points larger. The model even suggests that, in 2022,

monetary policy was more influential in driving crypto returns than crypto-specific demand

shocks. Conventional risk premium shocks (“risk-off” shocks) generally contributed pos-

itively to crypto asset returns over our sample period—suggesting declining conventional

risk premia—except for a brief period during the March 2020 COVID-19 sell-off. Finally,

while conventional shocks can have large lower-frequency impacts on crypto prices, most

day-to-day movements in Bitcoin prices are left unexplained by conventional shocks.
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Figure 1: Bitcoin returns decomposed into structural shocks

Panel A: Decomposition of Bitcoin cumulative (log) returns

Panel B: Bitcoin (log) returns decomposition by year

The figure shows Bitcoin returns decomposed into three structural shocks: monetary policy shocks, conven-
tional risk premium shocks, and crypto demand shocks. The decomposition uses the median-target solution
of a structural vector-autoregressive model identified with sign and magnitude restrictions.



Our approach draws on a long-established literature in macroeconomics. Sims (1980)

introduced the concept of VARs to study macroeconomics dynamics. Sign-restricted VARs

were developed later on to impose structure to identify structural shocks (Faust, 1998; Canova

and De Nicol’o, 2002; Uhlig, 2005). For instance, a classic sign restriction in macroeconomics

is the assumption that a contractionary monetary policy shock raises the federal funds rate,

whereas real GDP, prices, and reserves decline. This approach of assigning reasonable sign

restrictions in order to identify structural shocks has been deemed as an “agnostic” method

that lets the data speak (Uhlig, 2005). Our paper adapts this “agnostic” approach to study

the rise of a new asset class—cryptocurrencies.

Specifically, we ask how much of the price fluctuations in a new asset class are coming

from spillovers from traditional financial markets versus idiosyncratic risks inherent in the

asset itself. To do so, we examine the daily return series of three assets— Bitcoin, two-year

Treasury zero coupon bonds, and the S&P 500 index. By studying the daily return co-

movements under reasonable assumptions of how a particular primitive shock would move

all three assets, we are able to decompose the individual asset returns into those arising from

three specific shocks, namely conventional risk premium shocks, monetary policy shocks, and

crypto-specific shocks.

We employ sign restrictions that are intuitive and guided by theory. Specifically, we

impose that positive conventional risk premium shocks (i.e., risk-off shocks) lead to lower

Bitcoin prices, lower Treasury yields, and lower equity prices. Conversely, we impose that

positive (contractionary) monetary policy shocks lead to lower Bitcoin prices, higher Trea-

sury yields, and lower equity prices through a classic discount-rate channel. Finally, we

impose that crypto-specific demand shocks raise Bitcoin prices, but leave their impact on

conventional assets undetermined (while managing the impact of crypto shocks on conven-

tional assets through magnitude restrictions).

Intuitively, the sign-restricted VAR attributes daily crypto returns to different shocks

depending on the co-movements of assets. For example, if interest rates fall significantly and

both equity prices and Bitcoin rally on the same day, the model picks up an expansionary
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(negative) monetary policy shock. On the other hand, if the stock market rallies, interest

rates decline, and Bitcoin rises, the model attributes the positive Bitcoin return to a reduction

in conventional risk premia. By aggregating Bitcoin returns on days with specific patterns

in the Treasury and stock markets (adjusted for the magnitude of their returns), the model

estimates the cumulative impact of each risk factor on Bitcoin’s price over time.

We further analyze the crypto-specific shock and the associated asset returns by exam-

ining the contributions of crypto growth and crypto risk premia. To accomplish this, we

expand the model by incorporating fluctuations in the market capitalization of stablecoins

alongside the three previously mentioned assets. Stablecoins are considered a safe asset

within the broader digital asset ecosystem (see, e.g., Baur and Hoang, 2021; Grobys, Junt-

tila, Kolari, and Sapkota, 2021; Liao and Caramichael, 2022; Lyons and Viswanath-Natraj,

2023) and changes in their aggregate market cap relative to volatile crypto asset returns can

help differentiate between shocks primarily driven by risk premia or adoption.1

Our central assumption in this extended model is that a positive crypto adoption shock

raises both stablecoin market cap and bitcoin prices, while a positive crypto risk premium

shock (crypto risk-off) decreases Bitcoin prices, but raises stablecoin market cap. Using

this extended model, we show that crypto risk premia have compressed substantially from

2023 onwards and explain a predominant portion of the positive Bitcoin returns particularly

around the introduction of the Blackrock Bitcoin ETF.

The four shocks examined in our extended model encapsulate both the internal dy-

namics of the crypto market and its interactions with broader financial variables. Crypto

adoption shocks refer to changes in the intrinsic value and adoption rate of cryptocurrencies,

reflecting innovation, regulatory changes, or shifts in adoption sentiments. Crypto risk pre-

mium shocks, on the other hand, represent variations in the risk compensation demanded

by investors for holding crypto assets, which may be influenced by factors such as market

liquidity and volatility. Similarly, conventional risk premium shocks are included to account

1We use secondary-market price-adjusted circulation that captures both changes in at par stablecoin
outstanding and secondary market price movements that are more sensitive to immediate demand and
supply imbalances.
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for changes in the risk compensation required for holding traditional financial assets, which

could indirectly impact crypto prices through shifts in investor risk appetite and portfolio

rebalancing. Lastly, monetary policy shocks are considered to capture the effects of broader

economic growth dynamics on the crypto market, acknowledging the interconnectedness of

cryptocurrencies with broader financial markets.

We also find that while conventional monetary policy and risk premium shocks have

lower-frequency impacts on Bitcoin returns, most of the variation in daily Bitcoin returns

is attributed to crypto-risk premium shocks. This is unsurprising and echoes research on

equities showing that risk premia plays a sizable role in explaining returns. To further

validate our findings, we conduct event studies focusing on significant market events such

as the COVID-19 market turmoil, the collapse of FTX, and the launch of BlackRock’s

spot Bitcoin exchange-traded fund (ETF). These case studies confirm and differentiate the

crypto-specific factors in driving cryptocurrency prices and flows.

Related literature The study of cryptocurrency asset returns and their drivers has

gained significant attention in recent years. Researchers have employed various methodolo-

gies to investigate the factors influencing cryptocurrency returns and their relationships with

traditional financial assets. VAR models have been widely used to analyze the dynamics of

time serial variables since their introduction by Sims (1980) with a more recent application

to financial asset prices by Cieslak and Pang (2021). Karau and Moench (2023) and Faia,

Karau, Lamersdorf, and Moench (2024) study the impact of mining shocks on Bitcoin prices.

In particular, Faia et al. (2024) also estimate a sign-restricted VAR and find that both Bit-

coin news and mining shocks affect Bitcoin prices, but they do not consider the impact of

conventional monetary policy shocks and risk premia on Bitcoin prices. The contribution

of this paper to examine how much well-known conventional drivers of asset prices (i.e.,

monetary policy and risk premia) are relevant as drivers of a relatively new asset class.

Related to the study of crypto asset prices, Liu and Tsyvinski (2021) examine the risks

and returns of cryptocurrencies and find that they have low exposures to traditional asset

classes, suggesting potential diversification benefits. Baur, Hong, and Lee (2018) investigate
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whether Bitcoin serves as a medium of exchange or a speculative asset and conclude that it

is primarily used for speculative purposes. The relationship between cryptocurrencies and

traditional financial assets has been a topic of interest. Corbet, Meegan, Larkin, Lucey, and

Yarovaya (2018) investigate the dynamic relationships between cryptocurrencies and other

financial assets, revealing that cryptocurrencies have limited connectedness with traditional

assets. Bouri, Molnár, Azzi, Roubaud, and Hagfors (2017) examine whether Bitcoin can serve

as a hedge or safe haven for major world stock indices, bonds, oil, gold, the general commodity

index, and the US dollar index, finding that Bitcoin has limited hedging capabilities.

Other aspects of cryptocurrency markets have also been explored. Griffin and Shams

(2020) investigate whether Tether, a digital currency pegged to the US dollar, influenced

Bitcoin and other cryptocurrency prices during the 2017 boom, finding evidence of price

manipulation. Makarov and Schoar (2020) analyze trading and arbitrage in cryptocurrency

markets, documenting large arbitrage opportunities across exchanges and shedding light on

the behavior of market participants. In a related study, Makarov and Schoar (2022) analyze

the trading volume in cryptocurrency markets and estimate that wash trading, a form of

market manipulation, accounts for a significant portion of trading activity.

Relative to these studies, our core contribution is to provide a decomposition of returns

on a high growth and volatile asset class using a methodology with theoretical underpinning

and minimum added assumptions. We document the one-way spillover of risk that has so

far dominated the relationships between cryptocurrencies and traditional asset classes, and

we investigate the role of monetary policy, systemic and idiosyncratic risk factors on the new

asset class. Furthermore, we explore the differential pricing dynamic between stablecoins

and volatile crypto assets and use the relationship to dissect crypto adoption versus risk

premia factors in relation to notable events.

The paper proceeds as follows. Section 2 explains the methodology and details the sign

restriction assumptions. Section 3 discusses the data and estimation procedure. Section

4 presents our main results on the drivers of Bitcoin returns, while Section 5 extends the

analysis to include stablecoin flows. Section 6 provides event studies to further validate our
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findings. Finally, Section 7 concludes.

2 Methodology: Sign-restricted VAR

2.1 VAR model

We assume that N asset prices, summarized in a N × 1 vector Yt, follow a VAR. For

simplicity, we assume that this VAR is of first order:2

Yt = A1Yt−1 + et. (1)

Equation (1) is often referred to as a reduced form, and so the et are reduced-form shocks.

The model is referred to as a reduced form model since it is a statistical model and the shocks

et do not necessarily have an interpretation in terms of any underlying economic shocks. For

instance, one could imagine that Yt consists of inflation and output, and interpret the shocks

as shocks to inflation and output. However, the true shocks generating inflation might

as well be aggregate demand or supply shocks, which influence both inflation and output

simultaneously.

To provide an interpretation of the statistical model in Equation (1), we assume a struc-

tural model and identify the model using sign restrictions:

B0Yt = B1Yt−1 + ϵt, (2)

where ϵt are shocks with zero mean, constant variances, and no time-serial correlation. Com-

paring (1) and (2) yields B0et = ϵt. That is, the structural shocks are a linear combination

of the reduced-form shocks. We can estimate the reduced-form shocks êt, so all that remains

is to construct an appropriate set weights B̂0 in order to identify the structural shocks.

Rather than using a particular parametric model that ties reduced-form shocks and struc-

tural shocks together through a single matrix B0, we impose sign restrictions on the responses

2It is well known that the first-order matrix representation can represent VARs with more lags.
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of asset prices to structural shocks ϵt. This approach leads to a set as opposed to point iden-

tification of B0 (i.e., model multiplicity), but it also tends to lead to more robust estimates.

2.2 Sign restrictions

We first consider three asset prices and three structural shocks in estimating a baseline

model. The three asset prices examined are the dividend-adjusted price series of the S&P

500 index, the two-year Treasury expressed as zero-coupon bond yields, and the price of

Bitcoin. The three structural shocks are conventional risk premium, monetary policy shocks,

and crypto demand shocks. Subsequently we extend this baseline model to decompose the

crypto shocks into those that reflect crypto adoption and crypto risk premium. We explain

the nature of these shocks and our assumptions on their impacts on asset prices as follows.

Crypto demand shocks. Crypto demand shocks are adoption shocks that raise bitcoin

prices. We leave the impact of crypto demand shock on conventional assets undetermined.

That is, by assumption, there are no meaningful spillovers from crypto markets to conven-

tional markets, which we believe is a reasonable assumption over our sample period. As

bitcoin supply is entirely deterministic, there are no bitcoin supply shocks.

Conventional monetary policy shocks. The second type of shocks we consider are

conventional monetary policy shocks. Conventional monetary policy shocks are exogenous

shocks to short-term risk-free rates or their expected paths that are orthogonal to other

state variables driving the short rate. Their impact on asset prices reflects a discount rate

effect: all else being equal, asset prices are worth less when discount rates increase, simply

because the opportunity cost of holding theses assets increases. In contrast to the crypto

demand shock, we assume that conventional shocks can affect both conventional risk assets

and crypto assets. Consequently, we assume that a positive monetary policy shock leads to

higher yields (i.e., lower bond prices), lower S&P 500 prices, and lower bitcoin prices.
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Conventional risk premium shocks. The third type of shocks we consider are conven-

tional risk premium shocks. These are classic “flight-to-safey” shocks across asset classes.

Consequently, we assume that increases in conventional risk premium lead to declines in

risky asset prices and increases in safe asset prices. That is, a positive conventional risk

premium shock decreases bitcoin prices, stock prices, and yields.

We summarize the sign restrictions in Table 1.

Table 1: Sign restrictions

Asset/Shock Conv. Risk Premium Monetary Policy Crypto Demand

BTC Returns - - +

2Y ZCB Yield - + ?

S&P 500 Returns - - ?

The table summarizes the sign restrictions. Shocks are in columns, assets are in

rows. The assets are Bitcoin (BTC), the 2-year zero-coupon bond Treasury yield

(2Y ZCB Yield), and the S&P 500.

In an extension of the model, we further decompose the crypto demand shock into a

crypto adoption shock and a crypto risk premium shock. We do so using stablecoin flows,

as there is evidence that stablecoins act as a safe asset within the crypto asset space (Baur

and Hoang, 2021; Grobys et al., 2021; Liao and Caramichael, 2022). We compute stablecoin

flows as changes in market cap:

In this extension, we assume that a crypto adoption shock raises both Bitcoin prices and

the market capitalization of stablecoins and, thus, we interpret such a shock as an adoption

shock to the broader crypto eco-system. Conversely, we assume that a crypto risk premium

shock reflects a flight-to-safety shock within the crypto eco-system, lowering bitcoin prices

and increasing stablecoin market caps.

Once again, we leave the impact of crypto shocks on conventional assets undetermined,

but manage their impact through magnitude restrictions such that there are no meaningful

spillovers. Even though stablecoins can act as a safe haven within the cypto ecosystem, we
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assume that a positive conventional risk premium shock leads to stablecoin outflows. The

reason is simply that US Treasuries are the ultimate safe haven and that it is challenging

for privately created money to achieve this ultimate safe haven status (see, e.g., Gorton and

Zhang, 2023; Ma, Zeng, and Lee Zhang, 2023). We summarize the sign restrictions of this

extended model in Table 2.

Table 2: Sign restrictions (extended model)

Asset/Shock Con. Risk Premium Monetary Policy Crypto Adoption Crypto Risk Premium

Stablecoin Flows - - + +

BTC Returns - - + -

2Y ZCB Yield - + ? ?

S&P 500 Returns - - ? ?

The table summarizes the sign restrictions of the extended model with stablecoin flows. Shocks are in

columns, assets are in rows. The assets are stabecloins, Bitcoin (BTC), the 2-year zero-coupon Treasury

yield (2Y ZCB Yield), and the S&P 500.

3 Data and estimation

3.1 Data

We use four assets: the S&P 500, 2-year zero-coupon Treasuries, Bitcoin, and stablecoins,

and consider changes/returns in these assets. We use data from 01/2019 to 02/2024.

We limit the universe of stablecoins to USDT and USDC, as these are the two main

fiat-backed stablecoins representing over 90% of all stablecoin circulation and they are more

likely to serve as crypto safe-haven assets due to their backing and widespread usage (see,

e.g., Anadu, Azar, Cipriani, Eisenbach, Huang, Landoni, La Spada, Macchiavelli, Malfroy-

Camine, and Wang, 2024; Liao and Caramichael, 2022). In contrast, alternative stablecoins

such as algorithmic stablecoins have been shown to be prone to run risk (see, e.g., Adams

and Ibert, 2022; Uhlig, 2022; Liu, Makarov, and Schoar, 2023).

Daily nominal 2-year Treasury yields are from Gürkaynak, Sack, and Wright (2007) and
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downloadable here. S&P 500 returns are from Bloomberg. We use USD prices of Bitcoin,

USDC, and USDT from CoinGecko as of US market close. We provide a link to the dataset

from Dune Analytics to faciliate replication of this study.3

We use stablecoin circulation of USDT and USDC provided by DefiLlama, a leading data

provider for cryptocurrency data. DefiLlama’s data covers the period from March 30, 2021,

to the present. To access earlier data, we have developed a script that retrieves the total

supply directly from the Ethereum blockchain. Historically, the vast majority of stablecoin

circulation was on Ethereum. However, the issuance of stablecoins on other blockchains has

gradually increased, and these are now issued natively on various blockchains as captured by

the more recent DefiLlama data. The discrepancy between the total stablecoin circulation

and that on Ethereum alone prior to 2021 is minimal for our analysis focused on daily

changes.

Additionally, we calculate the market capitalization of each stablecoin by multiplying its

circulation by its price in secondary markets. This approach helps us track high-frequency

changes in market capitalization due to its sensitivity to price fluctuations in these markets.

We use secondary market prices because they can more immediately reflect stablecoin de-

mand at a daily level, as primary market issuance and redemption responses to price changes

can be lagged due to arbitrage process.

3.2 Estimation

We obtain reduced-form shocks from a VAR(1) estimated by OLS over the entire sample.

Once we have these shocks, we employ an algorithm to generate possible combinations of

candidate matrices, B̂0, and shocks, ϵ̂t. These combinations must satisfy the equation B̂0êt =

ϵ̂t, with the condition that the shocks ϵ̂t are uncorrelated. There are numerous potential

combinations; however, only some will yield impulse responses that adhere to the constraints

specified in Table 1. Combinations that fail to produce impulse responses meeting these

criteria are discarded, and new ones are generated and tested.

3Dune Analytics query: https://dune.com/queries/2977622
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The crucial step in designing this algorithm is to ensure that the candidate matrices are

such that the structural shocks are uncorrelated. To construct a set of uncorrelated shocks,

we start with the Cholesky decomposition of the variance-covariance matrix of the reduced-

form shocks, F−1Σ̂eF
′−1 = IN . The Cholesky decomposition yields a set of uncorrelated

shocks η̂t with unit variance such that êt = F η̂t. The shocks η̂t are now regarded as structural

shocks and a natural starting point. However, the Cholesky decomposition corresponds to

estimating a recursive VAR, and shocks from a recursive VAR do not have an economic

interpretation in our setting as it is difficult to defend any particular ordering of shocks in

our setting.4

Thus, we form combinations of the η̂t using a matrix Q, i.e., η̂∗t = Qη̂t. As mentioned

above, the structural shocks need to be uncorrelated and so Q must be restricted. The

appropriate restriction is that Q is a square matrix such that Q′Q = QQ′ = IN since

êt = FQ′Qη̂t = F ∗η̂∗t and cov(η̂∗t η̂
∗′
t ) = Qcov(η̂tη̂

′
t)Q

′ = IN . If we can generate such a matrix

Q, we have found a new set of shocks, η̂∗t , with the same covariance matrix as η̂t, but with

a different impact (F ∗) on the reduced-form shocks and, thus, the variables Yt in the VAR.

The ability to create a large number of candidate shocks with varying impulse responses is

central to the sign restriction method.

How do we generate a large number of matrices Q with the property Q′Q = QQ′ = IN?

We generate these rotation matrices Qi based on the QR matrix factorization of Rubio-

Ramı́rez, Waggoner, and Zha (2010). Whenever F ∗(Qi) = FQ′
i together with η̂∗t (Qi) = Qiη̂t

and êt = F ∗(Qi)η̂
∗
t (Qi) satisfy the restrictions laid out in Table 1, we store the rotation

matrix Qi as a valid solution. We store i = {1, ..., 1000} such solutions. By construction, the

structural shocks η̂∗t (Qi) have zero mean, unit variance, and are uncorrelated. Finally, we

note that, while the shocks are contemporaneously uncorrelated, we allow for correlations

over time. For instance, a positive conventional risk premium shock may subsequently lead

to a negative monetary policy shock (i.e. the “Fed put”).

4See also footnote 3 in Fry and Pagan (2011).
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3.3 Set identification

We only retain those shocks whose impulse responses are consistent with the sign restric-

tions. Still, there may be many such shocks and impulse responses. Which ones to focus

on? We follow the approach in Fry and Pagan (2011) and focus on the median target (MT)

solution. The MT solution’s impulse responses are closest to the median impulse responses

across solutions, but the MT solution ensures that the impulse responses come from the same

model without mixing different solutions, thereby maintaining a structural interpretation of

the shocks. Formally, we denote the vector of impulse responses as θi = vec(F ∗(Qi)). We

standardize each impulse response by subtracting the element-wise median across admissible

models and divide by the standard deviation across admissible models. Finally, we choose

the impulse responses and corresponding structural shocks that are closest to the median

across solutions (see also Cieslak and Pang, 2021):

θMT = mini

(
θi −median(θi)

std(θi)

)′ (
θi −median(θi)

std(θi)

)
. (3)

We present most results for this MT solution. As a robustness check, we also characterize

model uncertainty by reporting the distribution of estimates across all admissible models.

4 Drivers of Bitcoin returns

4.1 Cumulative shocks over time

Figure 2 plots the paths of cumulative shocks for the model with three structural shocks.

The figure shows both the cumulative shocks for the MT solution as well as the median of

cumulative shocks across all retained solutions. The median-target solution is generally close

to the median of cumulative shocks across all retained solution, suggesting that the optimiza-

tion in Equation (3) works well. The figure also shows the 95th and the 5th percentiles of the

distribution of cumulative shocks. These are generally close to the median-target solution,

suggesting that model uncertainty is not a primary concern. We note that the 95th and 5th
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Figure 2: Cumulative de-trended shocks over time

(a) Monetary policy shocks (b) Conventional risk premium shocks

(c) Crypto demand shocks

The figure shows cumulative shocks over time. Shocks are a monetary policy shock (positive is
contractionary), a conventional risk premium shock (positive is risk-off), and a crypto (Bitcoin)
demand shock. The figure shows the median-target solution (in black) of a structural vector-
autoregressive model identified with sign and magnitude restrictions, as well as the median across
solutions (in purple) and the 5th and 95th percentiles across solutions (in grey).
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percentiles should not be interpreted as confidence intervals in the traditional sense.

The paths of cumulative shocks have intuitive appeal. The sign-restricted VAR model

suggests that positive conventional risk premium shocks were responsible for the decline in

risky asset prices during March 2020 amid the COVID-19 induced market turmoil. This

has intuitive appeal, since many market commentators highlighted classic flight-to-safety

shocks as the primary drivers of risky assets and Treasury yields during that period. Con-

ventional risk premia subsequently declined, supporting risky asset prices. The model also

suggests that monetary policy shocks were negative over 2021 and positive over 2022. This is

consistent with the accommodative monetary policy in response to the economic challenges

brought upon by the pandemic and the subsequent tightening of monetary policy as inflation

unexpectedly rose well above target. The crypto demand shocks were positive during 2021,

supporting Bitcoin prices, and negative subsequently, depressing Bitcoin prices.

A key question we would like to answer is how much the conventional risk premium and

the monetary policy shocks affect crypto assets. We examine this next.

4.2 Bitcoin return decomposition

We start by decomposing (log) Bitcoin returns into the three structural shocks: monetary

policy shocks, conventional risk premium shocks, and crypto demand shocks. Figure 3 shows

this decomposition over time using the MT solution. For completeness, the appendix shows

similar return decompositions for the S&P 500 and 2-year Treasury yields. In these plots,

adding up the cumulative shocks at a given point in time recovers the cumulative Bitcoin

return until that point in time.

Figure 3 shows that, as can be expected from the paths of cumulative shocks, the de-

cline in Bitcoin prices during March 2020 was primarily driven by conventional risk pre-

mium shocks (the blue line moves downward, showing a negative contribution to Bitcoin

returns from positive conventional risk premium shocks). From March 1 to March 31, bit-

coin prices declined from around $8,600 to $6,500—a 24.2% drop in simple returns and a

27.7% drop in log returns. The subsequent increase in Bitcoin prices over 2020 was supported
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by both declining conventional risk premia and accommodative monetary policy (both the

Boardeaux-red line and the blue line move upwards, indicating a positive contribution to

Bitcoin returns). That said, a large chunk in the increase in Bitcoin prices until early 2021

is unexplained by both conventional monetary policy and conventional risk premium shocks,

and reflects significant Bitcoin demand shocks.

Figure 3: Bitcoin returns decomposed into three structural shocks

The figure shows Bitcoin returns decomposed into three structural shocks: monetary policy shocks, conven-

tional risk premium shocks, and crypto demand shocks. The decomposition uses the median-target solution

of a structural vector-autoregressive model identified with sign and magnitude restrictions.

Turning to 2022, the decline in Bitcoin prices over the year can be explained by a com-

bination of negative monetary policy shocks as well as negative Bitcoin demand shocks,

while declining conventional risk premia continued to support Bitcoin prices. Overall, from

January 1, 2022 to January 1, 2023 Bitcoin prices declined by around -1.02 in log returns,
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equivalent to around 64% in simple returns. The model suggests that positive monetary

shocks (tightening) led to a decline of 0.71 in log returns, crypto demand shocks led to a

decline of 0.57 in log returns, and negative conventional risk premium shocks led to an in-

crease of 0.26 in log returns to (−0.71− 0.57 + 0.26 = −1.02). Converted to simple returns,

monetary policy shocks contributed around 50 percentage points to the overall decline of

64% in Bitcoin prices. Put differently, the model suggests that Bitcoin prices would have

declined only 14% as opposed to 64% had there been no (positive) monetary policy shocks

over 2022.

Figure 3 also suggests that, while conventional monetary policy and risk premium shocks

have lower-frequency impacts on Bitcoin returns, most of the variation in daily Bitcoin

returns is left unexplained by conventional shocks. We illustrate that most of the daily

variation in Bitcoin returns is unexplained by conventional risk premium shocks and mone-

tary policy shocks in Figure 4. The figure shows a variance decomposition of daily Bitcoin

returns into the three shocks and shows that crypto demand shocks account for more than

80% of the variability in Bitcoin daily returns. This confirms the notion that Bitcoin is a

volatile asset whose variability cannot be explained by shocks that drive conventional assets.

The low-frequency impact of monetary policy is further highlighted in Table 3 that shows a

quarterly-to-daily variance ratio of 1.8 for the monetary policy factor while less than unity

for the other two factors. A variance ratio of greater than 1 indicates positive autocorrelation

(Lo and MacKinlay, 1988) and possible arbitrage.5

5Daily versus weekly variance swap, for example, on a tradeable index is a direct way to express views
on autocorrelation.
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Table 3: Decomposed Return Volatilities

Factors Daily Vol Quarterly Vol Variance Ratio (q/d)

Conventional risk 0.168 0.148 0.78
Monetary policy 0.211 0.284 1.80
Crypto-specific 0.621 0.602 0.94

Figure 4: Variance decomposition of Bitcoin returns

The figure shows the fraction of the daily variance of 2-year Treasury yields (2Y Bonds), S&P 500 returns,

and Bitcoin returns explained by monetary policy, conventional risk premium, and crypto (Bitcoin) demand

shocks.

To better understand the daily drivers of Bitcoin returns, we next turn to the extended

model that further decomposes the crypto demand shock into a crytpo adoption shock and

a risk premium shock within the crypto asset space.
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5 Drivers of Bitcoin returns and stablecoin flows

5.1 Cumulative shocks over time

Figure 5 shows the cumulative shocks over time for the extended model with four shocks.

The MT solution is close to the median across solutions once again and the cumulative MT

monetary policy and conventional risk premium shocks are similar compared with Figure

2. That said, the 5th and 95th percentiles of across solutions are wider compared to the

baseline model, suggesting that model uncertainty is larger for the extended model.

The figure shows that crypto adoption shocks (shocks that raise both stablecoin market

cap and Bitcoin prices) have been positive from 2020 until mid 2021 and negative thereafter.

Similarly, crypto risk premium shocks (shocks that raise stablecoin market cap and depress

Bitcoin prices) have been positive from 2020 until mid 2021 and negative thereafter.

5.2 Bitcoin return and stablecoin flow decomposition

Panel A of Figure 6 shows the decomposition of bitcoin prices into structural shocks using

the sign-restricted VAR model that decomposes crypto demand shocks further into crypto

adoption and crypto risk premium shocks. Reassuringly, the impact of both conventional

monetary and conventional risk premium shocks on bitcoin prices is similar to the impacts

of these shocks in the 3 × 3 sign-restricted VAR model from the previous section. Panel B

of Figure 6 shows a similar decomposition for stablecoin market cap.

The figure shows that the model attributes most of the increase in Bitcoin prices from

2020 to mid-2021 to crypto adoption shocks. The reason is simply that both stablecoins

and Bitcoin prices experienced tremendous growth over this period. Our qualification of a

crypto adoption shock as indicated by the sign restrictions is that it raises both stablecoin

market cap and bitcoin prices (see Table 2) and, thus, it is not surprising that the model

picks up crypto adoption shocks over this period. Conversely, as the growth of stablecoins

has moderated since late 2022 and, for some subperiods even reversed, the bitcoin price

decomposition suggests negative crypto adoption shocks (which push both bitcoin prices and
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Figure 5: Cumulative de-trended shocks over time (extended model)

(a) Monetary policy shocks (b) Conventional risk premium shocks

(c) Crypto adoption shocks (d) Crypto risk premium shocks

The figure shows cumulative shocks over time. Shocks are a monetary policy shock, a conventional
risk premium shock, a crypto demand shock, and a crypto risk premium shock. The figure shows
the median-target solution (in black) of a structural vector-autoregressive model identified with
sign and magnitude restrictions, as well as the median across solutions (in purple) and the 5th and
95th percentiles across solutions (in grey).
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stablecoin market cap lower) and declining crypto risk premia (which raise bitcoin prices and

lower stablecoin market cap).

Moreover, the analysis of stablecoins since 2020 reveals significant high-frequency fluc-

tuations which are obscured in log-scale graphs due to the massive increase in stablecoin

market cap from 2020 to 2022. Consequently, Figure 7 presents the breakdown of Bitcoin

returns and stablecoin flows starting in early 2022. Panel A indicates that the decline in

Bitcoin prices throughout 2022 is due to positive monetary policy shocks and negative crypto

adoption shocks. Panel B suggests that the reduction in stablecoin market caps during the

same period is primarily driven by negative crypto adoption shocks.

To further study the implications of the model and the drivers of crypto assets, we

next turn to event studies and study crypto price movements around four events that were

associated with large price movements.



Figure 6: Bitcoin return and stablecoin flow decomposition into four shocks

(a) Bitcoin return decomposition

(b) Stablecoin flow decomposition

The figure shows Bitcoin returns and stablecoin flows decomposed into four structural shocks:
conventional monetary policy shocks, conventional risk premium shocks, crypto adoption shocks,
and crypto risk premium shocks. The decomposition uses the median-target solution of a structural
vector-autoregressive model identified with sign and magnitude restrictions.
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Figure 7: Bitcoin return and stablecoin flow decomposition since 2022

(a) Bitcoin return decomposition

(b) Stablecoin flow decomposition

The figure shows Bitcoin returns and stablecoin flows decomposed into four structural shocks:
conventional monetary policy shocks, conventional risk premium shocks, crypto adoption shocks,
and crypto risk premium shocks. The decomposition uses the median-target solution of a structural
vector-autoregressive model identified with sign and magnitude restrictions.
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6 Event studies

6.1 COVID-19 market turmoil

We first zoom in on the drivers of crypto assets during the COVID-19 induced market

turmoil. Figure 8 shows Bitcoin returns and stablecoin flows decomposed from January 2020

to May 2020. We start with a narrative description of overall Bitcoin returns and stablecoin

market caps over this period before turning to the model decomposition. Bitcoin returns

declined significantly in March 2020, whereas stablecoin market caps increased significantly.

The period was characterized as a “risk-off” episode with larger declines in asset prices

than were be justified by the decline in fundamentals (see, e.g., Chen, Ibert, and Vazquez-

Grande, 2020). The massive growth of stablecoins in this “risk-off’ period suggests that,

indeed, stablecoins act as a safe haven within the crypto asset space, which validates our

identifying assumption laid out in Table 2.

As the period was characterized as a “risk-off” episode, we expect positive conventional

risk premium shocks and crypto risk premium shocks to play a dominant role. While Treasury

yields declined in the intermediate run, the immediate behavior of Treasury yields was erratic

amid liquidity issues in the Treasury market. Thus, monetary policy shocks may have been

mixed, as yields temporarily increased, at least during March 2020. Figure 9 plots the

cumulative shocks over time. As expected, both conventional and crypto risk premium

shocks were significantly positive.

The decomposition of Bitcoin returns and stablecoin flows in Figure 8 further confirms

the narrative. Panel (a) shows that, indeed, the model attributes the decline in Bitcoin

prices in 2020 to a combination of positive conventional risk premium shocks and positive

crypto risk premium shocks. At the same time, positive crypto adoption shocks supported

Bitcoin prices. Panel (b) shows the massive growth in stablecoins over this period is due

to both positive risk premium shocks (that led to safe-haven inflows into stablecoins) and

positive crypto adoption shocks.
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Figure 8: Crypto assets decomposition around COVID-19 market turmoil

(a) Bitcoin return decomposition

(b) Stablecoin flow decomposition

The figure shows Bitcoin returns and stablecoin flows from January 2020 to May 2020 decomposed
into four structural shocks: conventional monetary policy shocks, conventional risk premium shocks,
crypto adoption shocks, and crypto risk premium shocks. The decomposition uses the median-target
solution of a structural vector-autoregressive model identified with sign and magnitude restrictions.
The dashed vertical line indicates March 10th, 2020.
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Figure 9: Cumulative de-trended shocks around COVID-19 market turmoil

(a) Monetary policy shocks (b) Conventional risk premium shocks

(c) Crypto adoption shocks (d) Crypto risk premium shocks

The figure shows cumulative shocks over time. Shocks are a monetary policy shock, a conventional
risk premium shock, a crypto demand shock, and a crypto risk premium shock. The figure shows
the median-target solution of a structural vector-autoregressive model identified with sign and
magnitude restrictions, as well as the median across solutions and the 5th and 95th percentiles
across solutions.
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6.2 FTX report

We next zoom in on the drivers of crypto assets around the collapse of FTX, beginning

again with a narrative description of overall Bitcoin returns and stablecoin market caps

over this period shown in the black lines of Figure 10. From September 2022 to January

2023, Bitcoin prices declined significantly, with most of the declines happening around the

time of the collapse of FTX in November 2022. Meanwhile, stablecoin market caps declined

modestly over the period, with a short spike around the collapse of FTX in November 2022,

consistent again with a safe-hafen property of stablecoins.

The immediate period around the collapse of FTX in November 2022 was characterized

by large price movements in crypto markets, but little price movements in conventional

markets. Thus, around the immediate collapse of FTX, we expect crypto shocks to play a

dominant role, in particular positive risk premium shocks and negative adoption shocks. We

expect a smaller role for conventional shocks around the immediate collapse of FTX. Figure

11 shows the cumulative shocks and, indeed, the model picks up negative crypto adoption

shocks and positive crypto risk premium shocks around the immediate collapse of FTX.

The decomposition of Bitcoin returns and stablecoin flows in Figure 10 confirms this

narrative. Around the immediate collapse of FTX in November 2022, increasing crypto

risk premia pushed Bitcoin prices lower and contributed to stablecoin inflows. At the same

time, negative crypto adoption shocks further pushed Bitcoin prices lower and contributed

negatively to stablecoin flows.
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Figure 10: Crypto assets decomposition around FTX collapse

(a) Bitcoin return decomposition

(b) Stablecoin flow decomposition

The figure shows Bitcoin returns and stablecoin flows from September 2022 to January 2023 decom-
posed into four structural shocks: conventional monetary policy shocks, conventional risk premium
shocks, crypto adoption shocks, and crypto risk premium shocks. The decomposition uses the
median-target solution of a structural vector-autoregressive model identified with sign and magni-
tude restrictions. The dashed vertical line indicates November 8th, 2022.
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Figure 11: Cumulative de-trended shocks around FTX collapse

(a) Monetary policy shocks (b) Conventional risk premium shocks

(c) Crypto adoption shocks (d) Crypto risk premium shocks

The figure shows cumulative shocks over time. Shocks are a monetary policy shock, a conventional
risk premium shock, a crypto demand shock, and a crypto risk premium shock. The figure shows
the median-target solution of a structural vector-autoregressive model identified with sign and
magnitude restrictions, as well as the median across solutions and the 5th and 95th percentiles
across solutions.
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6.3 Launch of BlackRock ETF

Lastly, we delve into the specific factors influencing cryptocurrency assets coinciding

with the introduction of BlackRock’s Bitcoin spot ETF. Figure 12 illustrates a substantial

increase in Bitcoin returns following BlackRock’s announcement to file for a Bitcoin spot

ETF. This period marks a significant shift in investor sentiment and market dynamics within

the cryptocurrency sector.

Further analysis is provided in Figure 13, which presents the cumulative shocks observed

around the time of this event. The model identifies two primary influences: positive crypto

adoption shocks and negative crypto risk premium shocks. The positive crypto adoption

shocks likely reflect increased market acceptance and investor interest triggered by the legit-

imacy and entry of a major institutional player like BlackRock into the Bitcoin market.

Concurrently, the negative crypto risk premium shocks suggest a reduction in the extra

return investors demand to hold Bitcoin over safer assets, indicating a perception of reduced

risk associated with Bitcoin investments during this period. This combination of factors

contributed significantly to the rise in Bitcoin prices. Specifically, the decomposition shown

in Figure 12 attributes the majority of the Bitcoin price increase from September 2023 to

December 2023 to these declining crypto risk premia.

These findings underscore the impact of significant market events and the perceptions

of institutional involvement on cryptocurrency markets, particularly in terms of adoption

dynamics and risk valuation by investors.
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Figure 12: Crypto assets decomposition around BlackRock ETF launch

(a) Bitcoin return decomposition

(b) Stablecoin flow decomposition

The figure shows Bitcoin returns and stablecoin flows from August 2023 to January 2024 decom-
posed into four structural shocks: conventional monetary policy shocks, conventional risk premium
shocks, crypto adoption shocks, and crypto risk premium shocks. The decomposition uses the
median-target solution of a structural vector-autoregressive model identified with sign and magni-
tude restrictions. The dashed vertical line indicates October 22nd, 2023.
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Figure 13: Cumulative de-trended shocks around BlackRock ETF launch

(a) Monetary policy shocks (b) Conventional risk premium shocks

(c) Crypto adoption shocks (d) Crypto risk premium shocks

The figure shows cumulative shocks over time. Shocks are a monetary policy shock, a conventional
risk premium shock, a crypto demand shock, and a crypto risk premium shock. The figure shows
the median-target solution of a structural vector-autoregressive model identified with sign and
magnitude restrictions, as well as the median across solutions and the 5th and 95th percentiles
across solutions.
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7 Conclusion

This paper investigates the drivers of Bitcoin returns and stablecoin flows using a struc-

tural VAR model identified with sign and magnitude restrictions. By decomposing price

movements into conventional monetary policy shocks, conventional risk premium shocks,

crypto adoption shocks, and crypto risk premium shocks, we provide new insights into the

factors influencing cryptocurrency markets and their interconnectedness with traditional fi-

nancial markets.

Our findings suggest that crypto-specific factors, namely adoption and risk premium

shocks, play a dominant role in explaining the variation in daily Bitcoin returns. While

conventional monetary policy and risk premium shocks have some impact on cryptocurrency

prices, their influence is more pronounced at lower frequencies. Furthermore, we provide

evidence supporting the safe-haven property of stablecoins within the crypto asset space, as

stablecoin market capitalization tends to increase during periods of market stress.

The event studies focusing on the COVID-19 market turmoil, the collapse of FTX, and

the launch of BlackRock’s spot Bitcoin ETF further validate our findings. These case stud-

ies highlight the importance of crypto-specific factors in driving cryptocurrency prices and

flows during significant market events. Our research has several implications for market par-

ticipants and policymakers. First, investors should be aware of the distinct factors driving

cryptocurrency prices and their potential diversification relative to traditional asset classes.

Second, our research provide a methodology to understand the direction and magnitude of

risk spillovers in new asset classes. The estimates can be used for investor hedging and

prudential risk monitoring.

Future research could extend our analysis by incorporating a wider range of cryptocurren-

cies and exploring the impact of regulatory changes on cryptocurrency markets. Additionally,

the development of more sophisticated models that capture the time-varying nature of the

relationships between cryptocurrencies and traditional asset classes could provide further

insights.
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A Appendix

A.1 S&P 500 and 2-year Treasury yield decomposition

Figure A1 shows S&P 500 returns decomposed into three structural shocks. Figure A2

shows 2-year Treasury yields decomposed into three structural shocks. By assumption, there

are few spillovers from crypto markets to conventional equity and bond markets.

Figure A1: S&P 500 returns decomposed into three structural shocks

The figure shows S&P 500 returns decomposed into three structural shocks: monetary policy shocks, conven-

tional risk premium shocks, and crypto demand shocks. The decomposition uses the median-target solution

of a structural vector-autoregressive model identified with sign and magnitude restrictions.
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Figure A2: 2-Year Treasury yield changes decomposed into three structural
shocks

The figure shows 2-Year Treasury yield changes decomposed into three structural shocks: monetary policy

shocks, conventional risk premium shocks, and crypto demand shocks. The decomposition uses the median-

target solution of a structural vector-autoregressive model identified with sign and magnitude restrictions.
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