
EVM CCTP
Public Security Assessment

December 19th, 2024 — Prepared by OtterSec

Robert Chen r@osec.io

Nicholas R. Putra nicholas@osec.io

Renato Eugenio Maria Marziano renato@osec.io

mailto:r@osec.io
mailto:nicholas@osec.io
mailto:renato@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 2

General Findings 3

OS-ECP-SUG-00 | Inconsistency in Specification and Implementation 4

Appendices

Vulnerability Rating Scale 6

Procedure 7

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 7

01 — Executive Summary

Overview

Circlefin engaged OtterSec to assess the cctp-v2cctp-v2 program. This assessment was conducted between

December 6th and December 17th, 2024. For more information on our auditing methodology, refer to

Appendix B.

Key Findings

We produced 1 suggestion throughout this audit engagement.

We recommend ensuring that the code implementation aligns with the specifications for consistency

(OS-ECP-SUG-00).

Scope

The source code was delivered to us in a Git repository at https://github.com/circlefin/evm-cctp-

contracts-private. This audit was performed against 5ee9bbd up to 7d70310.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

cctp-v2

It describes the version 2 (v2) of the cross-chain transfer protocol,

which enables token minting based on burns occurring on a different

domain (chain), ensuring a 1:1 equivalence between tokens across

domains.

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 7

https://github.com/circlefin/evm-cctp-contracts-private
https://github.com/circlefin/evm-cctp-contracts-private
https://github.com/circlefin/evm-cctp-contracts-private/tree/5ee9bbd27dbdc479c3d5dd2b024b87ecb1b167f3
https://github.com/circlefin/evm-cctp-contracts-private/commit/7d703109a2cfcb3f76375fef5f1a97f03c447b94

02 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-ECP-SUG-00
There are multiple inconsistencies between the specification and the imple-

mentation of the code.

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 7

EVM CCTP Audit 02 — General Findings

Inconsistency in Specification and Implementation OS-ECP-SUG-00

Description

There are multiple inconsistencies in the specification documentation. Below are the list of the inconcis-

tencies:

1. The receiveMessagereceiveMessage event does not include the emission of the minFinalityThresholdRequestedminFinalityThresholdRequested
field.

>_ src/v2/MessageTransmitterV2.sol solidity

function receiveMessage(
bytes calldata message,
bytes calldata attestation

) external override whenNotPaused returns (bool success) {
[...]

// Emit MessageReceived event
emit MessageReceived(

msg.sender,
_sourceDomain,
_nonce,
_sender,
_finalityThresholdExecuted,
_messageBody

);

return true;
}

2. The depositForBurndepositForBurn does not return the noncenonce in the current implementation.

>_ src/v2/TokenMessengerV2.sol solidity

function depositForBurn(
uint256 amount,
uint32 destinationDomain,
bytes32 mintRecipient,
address burnToken,
bytes32 destinationCaller,
uint256 maxFee,
uint32 minFinalityThreshold

) external notDenylistedCallers {
bytes calldata _emptyHookData = msg.data[0:0];
_depositForBurn(

amount,
destinationDomain,

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 7

EVM CCTP Audit 02 — General Findings

mintRecipient,
burnToken,
destinationCaller,
maxFee,
minFinalityThreshold,
_emptyHookData

);
}

We suggest ensuring that the code implementation aligns with the specifications for consistency.

Remediation

Implement the above-mentioned suggestion.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 7

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 7

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 7

	Executive Summary
	Overview
	Key Findings
	Scope

	General Findings
	[8.75em][l]OS-ECP-SUG-00 | Inconsistency in Specification and Implementation

	Appendices
	Vulnerability Rating Scale
	Procedure

